CHAPTER 09 - FREQUENCY RESPONSE

Example E02 - Pg 234

In [1]:
# Exa 9.2
# Given data
import math
bita= 100.;
V_B1= 5.;# in V
V_E1= 4.3;# in V
R_E1= 4.3*10.**3.;# in ohm
V_E2= 3.6;# in V
R_E2= 3.6*10.**3.;# in ohm
R_C=4.*10.**3.;# in ohm
R_L= 4.*10.**3;# in ohm
R1= 100.*10.**3.;# in ohm
R2= 100.*10.**3.;# in ohm
gm= 40.*10.**-3.;# in A/V
re= 25.;# in W
r_pie= 2.5*10.**3.;# in W
f_r= 400.*10.**6.;# in Hz
C_miu= 2.*10.**-12.;# in F
omega_T= 2.*math.pi*f_r;# in radian
Rin= 38.*10.**3.;# in ohm
R_S= 4.*10.**3.;# in ohm
R_pie1= 80.;#in ohm
Ve1ByVb1= 0.98;# in V/V
I_E1= V_E1/R_E1;# in A
I_E2= V_E2/R_E2;# in A
# We know, C_pie + C_miu= gm/ometa_T or
C_Pie= gm/omega_T-C_miu;# in F
Vb1ByVs= Rin/(Rin+R_S);# in V/V
#Ve1ByVb1= R_E1*r_pie2/(R_E1*r_pie2)/(R_E1*r_pie2/(R_E1*r_pie2)+r_e1);
VeByVb1= R_E1*r_pie/(R_E1*r_pie)/(R_E1*r_pie/(R_E1*r_pie)+R_E1);# in V/V
# The gain of the common-emitter amplifier Q2
VoByVe1= -gm*R_C*R_L/(R_C+R_L);# in V/V
# The overall gain
VoByVs= Vb1ByVs*Ve1ByVb1*VoByVe1;# in V/V
RdeshS= R1*R2*R_S/(R1*R2+R2*R_S+R_S*R1);
RdeshE1= R_E1*r_pie/(R_E1+r_pie);# in k ohm
R_miu1= R_S*Rin/(R_S+Rin)*10**-3;# in k ohm
R_pi1= (r_pie*(RdeshS+RdeshE1)/(1+gm*RdeshE1))/r_pie+(RdeshS+RdeshE1)/(1+gm*RdeshE1);
R_T=round( RdeshE1*(r_pie+RdeshS)/(bita+1)/(RdeshE1+(r_pie+RdeshS)/(bita+1)));# in ohm
print '%s %.2f' %("The overall voltage gain in V/V is : ",VoByVs)
print '%s %.2f' %("The value of R_miu1 in ohm is : ",R_miu1)
print '%s %.f' %("The value of R_pie1 in ohm is : ",R_pie1)
print '%s %.f' %("The value of R_T in ohm is : ",R_T)
The overall voltage gain in V/V is :  -70.93
The value of R_miu1 in ohm is :  3.62
The value of R_pie1 in ohm is :  80
The value of R_T in ohm is :  59

Example E03 - Pg 235

In [2]:
# Exa 9.3
import math
# Given data
wH= '0.9*wp1';
wp2='wp1*k';
#wH= 1/sqrt(1/wp1**1+1/(k*wp1)**2)
k= math.sqrt(0.9**2./(1-0.9**2.));
print '%s %.2f' %("The value of k is : ",k)
The value of k is :  2.06

Example E04 - Pg 238

In [3]:
# Exa 9.4
# Given data
Rs = 1.;# in k ohm
Rs = Rs * 10.**3.;# in ohm
omega_z = 10.;# in rad/sec
omega_p = 100.;# in rad/sec
#omega_z = 1/(Rs*Cs);
Cs = 1./(Rs*omega_z);# in F
print '%s %.f' %("The value of Cs in uF is",Cs*10.**6.);
#omega_p = (g_m + (1/Rs))/Cs;
g_m = omega_p*Cs-1/Rs;# in A/V
g_m= g_m*10.**3.;# in mA/V
print '%s %.f' %("The value of g_m in mA/V is",g_m)

# Note: The unit of g_m in the book is wrong. It will be in mA/V not in nA/V.
The value of Cs in uF is 100
The value of g_m in mA/V is 9