#Variable declaration
ni = 2.37*10**19 #intrinsic carrier density(m^-3)
ue = 0.38 #electron mobility(m^2/V-s)
uh = 0.18 #hole mobility(m^2/V-s)
e = 1.6*10**-19 #charge on electron(C)
#Calculations
sigma_i = ni*e*(ue+uh) #(1/ohm-m)
p = 1/sigma_i
#Result
print "Resistivity =",round(p,3),"m"
import math
#Variable declaration
Eg = 1.12 #bandgap(eV)
k = 1.38*10**-23 #Boltzman constant(J/K)
T = 300 #Temperature(K)
mh = 0.28 #Effective Mass of the hole(kg)
me = 0.12 #Effective Mass of the hole(kg)
e = 1.6*10**-19 #charge on electron(C)
#Calculation
Ef = (Eg/2)+3/4*k*T*(math.log(mh/me))/e
#Result
print "The position of the Fermi level is at",round(Ef,2),"from the top of valence band"
from math import pi, exp
#Variable declaration
m = 9.109*10**-31 #mass of an electron(kg)
k = 1.38*10**-23 #Boltzman constant(J/K)
T = 300 #Temperature(K)
h = 6.626*10**-34 #Planck's constant
Eg = 0.7 #bandgap(eV)
e = 1.6*10**-19 #charge on electron(C)
#Calculation
C = (((2*pi*m*k)/h**2)**(3./2.))
T1 = T**(3./2.)
E = exp((-Eg*e)/(2*k*T))
ni = 2*C*T1*E
#Result
print "Concentration of intrinsic charge carriers =",round((ni/1E+18),2),"*10**18/m^3"
#Variable declaration
ni = 2.4*10**19 #intrinsic carrier density(m^-3)
ue = 0.39 #electron mobility(m^2/V-s)
uh = 0.19 #hole mobility(m^2/V-s)
e = 1.6*10**-19 #charge on electron(C)
#Calculations
sigma_i = ni*e*(ue+uh) #(1/ohm-m)
p = 1/sigma_i
#Result
print "Resistivity =",round(p,3),"m"
#Variable declaration
ni = 2.5*10**19 #intrinsic carrier density(m^-3)
ue = 0.39 #electron mobility(m^2/V-s)
uh = 0.19 #hole mobility(m^2/V-s)
e = 1.6*10**-19 #charge on electron(C)
l = 1*10**-2 #length of rod(m)
A = 10**-3*10**-3 #area(m^2)
#Calculations
sigma = ni*e*(ue+uh) #(1/ohm-m)
R = 1/(sigma*A)
#Result
print "Resistivity =",round(R,3),"Ohms"
from math import pi, exp
#Variable declaration
ue = 0.48 #electron mobility(m^2/V-s)
uh = 0.013 #hole mobility(m^2/V-s)
Eg = 1.1 #bandgap(eV)
T = 300 #assumption - Temperature(K)
h = 6.626*10**-34 #Planck's constant
e = 1.6*10**-19 #charge on electron(C)
k = 1.38*10**-23 #Boltzman constant(J/K)
m = 9.1*10**-31 #mass of an electron(kg)
#Calculation
C = 2*(((2*pi*m*k)/h**2))**(3./2.)
ni = C*T**(3./2.)*exp((-Eg*e)/(2*k*T))
sigma_i = ni*e*(ue+uh)
#Result
print "Conductivity=",round((sigma_i/1E-3),3),"*10^-3/ohm-m"
from math import pi, exp
#Variable declaration
ue = 0.4 #electron mobility(m^2/V-s)
uh = 0.2 #hole mobility(m^2/V-s)
Eg = 0.7 #bandgap(eV)
T = 300 #assumption - Temperature(K)
h = 6.626*10**-34 #Planck's constant
e = 1.6*10**-19 #charge on electron(C)
k = 1.38*10**-23 #Boltzman constant(J/K)
m = 9.1*10**-31 #mass of an electron(kg)
#Calculation
C = 2*(((2*pi*m*k)/h**2))**(3./2.)
ni = C*T**(3./2.)*exp((-Eg*e)/(2*k*T))
sigma_i = ni*e*(ue+uh)
#Result
print "Intrinsic carrier density =",round((ni/1E+19),2),"*10^19 per m^3"
print "Conductivity=",round(sigma_i,2),"/ohm-m"
#Variable declaration
ue = 0.36 #electron mobility(m^2/V-s)
uh = 0.17 #hole mobility(m^2/V-s)
P = 2.12 #resistivity(ohm-m)
e = 1.6*10**-19 #charge on electron(C)
k = 1.38*10**-23 #Boltzman constant(J/K)
m = 9.1*10**-31 #mass of an electron(kg)
h = 6.626*10**-34 #Planck's constant
T = 300 #assumption - Temperature(K)
#Calculations
sigma = 1/P
ni = sigma/(e*(ue+uh))
C = 2*(((2*pi*m*k)/h**2))**(3./2.)
Eg = ((2*k*T)/e)*math.log(C*(T**(3./2.))/ni)
#Result
print "Forbidden energy gap =",round(Eg,3),"eV"
from math import log10
#Variable declaration
p1 = 2 #resistivity(ohm-m)
p2 = 4.5 #resistivity(ohm-m)
T1 = 20.+273 #Temperature(K)
T2 = 32.+273 #temperature(K)
k = 1.38*10**-23 #Boltzman constant(J/K)
#Calculations
dy = log10(p2)-log10(p1)
dx = (1/T1)-(1/T2)
dy_by_dx = dy/dx
Eg = (2*k*dy_by_dx)/e
#Result
print "Energy band gap =",round(Eg,3),"eV"
from math import log
#Variable declaration
e = 1.602*10**-19 #charge on electron(C)
k = 1.38*10**-23 #Boltzman constant(J/K)
Eg = 1*e #bandgap(J)
#Calculations
'''At T = 0K
(Ev+0.5)=(Ec+Ev)/2 -----(1)
Let at temperature T, fermi level be shited by 10%
(Ev+06) = (Ec+Ev)/2 +(3kT*ln(4))/4 ----(2)
Subtracting (1) from (2), we get the following expression'''
T = (4*e/10)/(3*k*log(4))
#Result
print "Temperature =",round(T,2),"K"
#Variable declaration
Na = 5*10**23 #no. of atoms of boron
Nd = 3*10**23 #no. of atoms of arsenic
ni = 2*10**16 #intrinsic charge carriers(/m^3)
#Calculations
p = (2*(Na-Nd))/2 #hole concentration(/m^3)
n = ni**2/p #electron concentration(/m^3)
#Result
print "Hole concentration =",round((p/1E+23),2),"*10^23 per m^3"
print "Electron concentration =",round((n/1E+9),2),"*10^9 per m^3"
#Variable declaration
ue = 0.13 #electron mobility(m^2/V-s)
uh = 0.05 #hole mobility(m^2/V-s)
e = 1.602*10**-19 #charge on electron(C)
ni = 1.5*10**16 #intrinsic charge carriers(/m^3)
#Calculations
#Part a
sigma = ni*e*(ue+uh) #conductivity(1/ohm-m)
#Part b
w = 28.1 #atomic weight of Si
den = 2.33*10**3 #density of Si(kg/m^3)
n = (den*6.02*10**26)/w #no. of atoms of silicon
#Since one donor type impurity atom is added in 10^8 Si atoms,
Nd = n/10**8
p = ni**2/Nd
sigma_ex = Nd*e*ue #(per ohm-m)
#Part c
Na = Nd #Since one acceptor type impurity atom is added in 10^8 Si atoms
n2 = ni**2/Na
sigma_ax = Na*e*uh #(per ohm-m)
#Results
print "a)Conductivity =",round((sigma/1E-3),3),"*10^-3 per ohm-m"
print "b)Conductivity if donor type impurity is added =",round(sigma_ex,2),"per ohm-m"
print "c)Conductivity if acceptor type impurity is added =",round(sigma_ax,2),"per ohm-m"
from math import log
#Variable declaration
ue = 0.135 #electron mobility(m^2/V-s)
uh = 0.048 #hole mobility(m^2/V-s)
e = 1.602*10**-19 #charge on electron(C)
ni = 1.5*10**16 #intrinsic charge carriers(atoms/m^3)
k = 1.38*10**-23 #Boltzman constant(J/K)
T = 300 #assumption - Temperature(K)
Nd = 10**23 #doping concentration(atoms/m^3)
#Calculations
sigma = ni*e*(ue+uh) #conductivity of intrinsic Si
p = ni**2/Nd #hole concentration
sigma_ex = Nd*e*ue #conductivity at equilibrium
F = (3*k*T)/(4*e)*log(ue/uh) #position of Fermi level
#Results
print "Conductivity of intrinsic Si is",round((sigma/1E-3),4),"*10^-3 per ohm-m"
print "Hole concentration at equilibrium is",round((Nd/1E+23)),"*10^23 per m^3"
print "Conductivity at equilibrium is",round((sigma_ex/1E+3),2),"*10^3 per m^3"
print "Fermi level will be",round(F,2),"eV above intrinsic level"
#Variable declaration
ue = 0.19 #electron mobility(m^2/V-s)
e = 1.602*10**-19 #charge on electron(C)
T = 300 #Temperature(K)
#Calculation
Dn = (ue*k*T)/e
#Result
print "Diffusion co-efficient =",round((Dn/1E-4),2),"*10^-4 m^2/s"
#Variable declaration
Rh = 3.66*10**-4 #Hall coefficient
I = 10**-2 #current(A)
B = 0.5 #magnetic field intensity(wb/m^2)
t = 1.*10**-3 #thickness of plate(m)
#Calculations
Vh = (Rh*I*B)/t
#Result
print "Hall coefficient =",(Vh/1E-3),"mV"
#Variable declaration
Vy = 37*10**-6 #voltage(V)
t = 10**-3 #thickness of crystal(m)
Bz = 0.5 #magnetic field intensity(Wb/m^2)
Ix = 20*10**-3 #current(A)
#Calculations
Vh = (Vy*t)/(Ix*Bz)
#Result
print "Hall coefficient =",(Vh/1E-6),"*10^-6 m^3/C"
#Variable declaration
Rh = 7.35*10**-5 #Hall coefficient(m^3/C)
e = 1.6*10**-19 #charge on electron(C)
sigma = 200 #conductivity(/ohm-m)
n = 8.023*10**22 #Avogadro's number
#Calculations
n = 1/(Rh*e)
u = sigma/(n*e)
#Results
print "Density =",round((n/1E+22),3),"*10^22 m^3"
print "Conductivity =",round((u/1E-3),2),"*10^-3 m^2/V-s"
#Variable declaration
I = 50 #current(A)
B = 1.5 #magnetic field intensity(T)
n = 8.4*10**28 #free electron concentration in copper(electron/m^3)
t = 0.5*10**-2 #thickness of slab(m)
#Calculation
Vh = (I*B)/(n*e*t)
#Result
print "The magnitude of Hall voltage is",round((Vh/1E-6),3),"*10^-6 V"
#Variable declaration
Rh = 3.66*10**-4 #Hall coefficient(m^3/C)
e = 1.6*10**-19 #charge on electron(C)
Pn = 8.93*10**-3 #resistivity(ohm-m)
#Calculation
n = 1/(Rh*e)
ue = Rh/Pn
#Result
print "n =",round((n/1E+22),3),"*10^22/m^3"
print "u =",round(ue,3),"m^2/V-s"