import math
# Variables
Fc = -1000. #lb
A = 60. #degrees
E1 = 60. #degrees
E2 = 60. #degrees
D = 60. #degrees
L1 = 10. #ft
L2 = 10. #ft
# Calculations
Ax = 0
Ay = (-Fc)*L1*math.cos(math.radians(D))/(L1+L2)
Dy = -Fc-Ay
Fab = Ay/math.sin(math.radians(A))
Fae = Fab*math.cos(math.radians(A))
Fbe = Fab*math.cos(90-E1)/math.cos(90-A)
Fbc = Fab*math.sin(math.radians(90-A))+Fbe*math.sin(math.radians(90-E1))
Fce = Fbc*math.cos(90-(180-E2-D))/math.cos(90-E2)
Fde = Fae+Fbe*math.cos(math.radians(E1))+Fce*math.cos(math.radians(E2))
Fcd = (-Fc-Fbc*math.cos(math.radians(90-E2-D)))/math.cos(math.radians(90-E1))
# Results
print 'Ax = %.3f lb'%(Ax)
print 'Ay = %.2f lb'%(Ay)
print 'Dy = %.3f lb'%(Dy)
print 'Fab = %.1f lbcompression'%(Fab)
print 'Fae = %.1f lbtension'%(Fae)
print 'Fbe = %.1f lbtension'%(Fbe)
print 'Fbc = %.1f lbcompression'%(Fbc)
print 'Fce = %.1f lbcompression'%(Fce)
print 'Fde = %.1f lbtension'%(Fde)
print 'Fcd = %.1f lbcompression'%(Fcd)
# Variables
W = -100. #lb
angle = 45. #degrees
x1 = 2. #ft
x2 = 2. #ft
y1 = 2. #ft
y2 = 4. #ft
Fx = 200. #lb
# Calculations
Cx = Fx*y1/y2
Bx = Fx+Cx
By = (y2*Bx+x1*(-W))/(x1+x2)
Cy = By
Ax = Bx
Ay = W+By
# Results
print 'Ax = %.3f lb'%(Ax)
print 'Ay = %.2f lb'%(Ay)
print 'Bx = %.3f lb'%(Bx)
print 'By = %.2f lb'%(By)
print 'Cx = %.2f lb'%(Cx)
print 'Cy = %.2f lb'%(Cy)