import math
# Variables
W = 100. #lb
Frictioncoefficient = 0.65
# Calculations
A1 = math.degrees(math.atan(Frictioncoefficient))
# Results
print 'Maximum Incliantion = %.f degrees'%(A1)
import math
# Variables
W = 100. #lb
Frictioncoefficient = 0.40
x = 3.
y = 4.
# Calculations
Fmax = (W*y/(math.sqrt(x**2+y**2)))+Frictioncoefficient*W*x/(math.sqrt(x**2+y**2))
Fmin =(W*y/(math.sqrt(x**2+y**2)))-Frictioncoefficient*W*x/(math.sqrt(x**2+y**2))
# Results
print 'Fmin = %.f lb'%(Fmin)
print 'Fmax =%.f lb'%(Fmax)
import math
from numpy import linalg
# Variables
mus = 0.25
d = 0.5 #in
h = 3. #in
# Calculations
A = [[1, -1],[mus, mus]]
b = [0,1]
c = linalg.solve(A,b)
Na = c[0]
Nb = c[1]
d = -d*mus*Na+h*Na
# Results
print 'minimu distance = %.2f in'%(d)
import math
# Variables
Ft = 1000. #lb
a1 = 5. #degrees
mu = 0.30
# Calculations
R1 = Ft/math.cos(a1+math.tan(mu))
F = R1*math.sin(a1)+math.tan(mu)+math.tan(mu)/math.sin(90-math.tan(mu))
# Results
print 'Forec required to start wedge = %.f lb'%(F)
import math
# Variables
W = 100. #lb
n1 = 1/2.
n2 = 3/2.
mus = 0.40
# Calculations
Ts1 = W/(math.exp(mus*n1*2*math.pi))
Ts2 = W/(math.exp(mus*n2*2*math.pi))
# Results
print 'Ts1 = %.2f lb'%(Ts1)
print 'Ts2 =%.2f lb'%(Ts2)
import math
from numpy import linalg
# Variables
F = 20. #lb
L1 = 6. #in
L2 = 12. #in
L3 = 24. #in
mus = 0.60
# Calculations
A =[[1,-math.exp(mus*math.pi)],[(L1+L2),(L1)]]
b =[0,F*(L1+L2+L3)]
c = linalg.solve(A,b)
TL = c[0]
Ts = c[1]
# Results
print 'TL = %.2f lb'%(TL)
print 'Ts = %.2f lb'%(Ts)
# note : answers are slightly different because of rounding off errors.
import math
# Variables
d = 24. #in
mu = 0.05
W = 2000. #lb
# Calculations
F = W*mu*2/d
# Results
print 'F = %.2f lb'%(F)
import math
# Variables
F = 800. #lb
muk = 0.10
Do = 5. #in
Di = 3. #in
# Calculations
M = 2*muk*F*((Do/2)**3-(Di/2)**3)/(3*((Do/2)**2-(Di/2)**2))
# Results
print 'M = %.f lb in'%(M)