# variables
Pas = 71.2 #kPa n-heptane
Pbs = 48.9 #kPa toluene
P = 65. #kPa equilibrium
# Calculation
#P=(Pas-Pbs)*xa+Pbs,xa=mole fraction of n-heptane,liq. condition,therefore
xa = (P - Pbs)/(Pas - Pbs)
#ya = Pa / P , Vapour condition
ya = Pas * xa / P
P1 = xa * 100
P2 = ya * 100
# Result
print "Percentage of hepatne in liquid = %.1f %%"%P1
print "Percentage of hepatne in vapour = %.1f %%"%P2
# variables
P1 = 100. #kPa ( Vapour pressure of liq A )
P2 = 60. #kPa ( Vapour pressure of liq B )
T = 320. #K
# Calculation
#Pa = xa * P1 = 100 * xa
#Pa = xb * P2 = 60 * xb
#P = xa * P1 + ( 1 - xa )* P2
# = 100xa + ( 1 - xa )* 60
# = 60 + 40*xa
#ya = Pa / P
#0.5 = 100*xa / ( 60 + 40 * xa)
xa = 60 * 0.5 / (100 - 20)
Per1 = xa * 100
# Result
print "(a)Percentage of A in liquid = ",Per1,"%"
Ptotal = 60 + 40 * xa
print "(b)Total pressure of the vapour = ",Ptotal,"kPa"
# variables
xa = 0.25 # liquid mixture
xb = 0.30
# Calculation
xc = 1 - xa - xb
Ptotal = 200. #kPa
Pcs = 50. #kPa(Vapour pressure of c)
Pc = xc * Pcs #(partial pressure of c)
yc = Pc / Ptotal
yb = 0.5
ya = 1 - yb - yc
per1 = ya * 100
# Result
print "Percentage of A in vapour = ",per1,"%"
# variables
P = 101.3 #kPa flash vaporization
Pbs = 54.21 #kPa pressure
Pas = 136.09 #kPa temperature
xf = 0.65 # liquid mixture
# Calculation
xw = (P - Pbs)/(Pas - Pbs)
yd = xw * Pas / P
# f = ( xf - xw ) / ( yd - xw )
f = ( xf - xw ) / ( yd - xw )
per1 = f * 100
# Result
print "mole percent of the feed that is vapourised = %.1f %%"%per1
%matplotlib inline
from matplotlib.pyplot import *
from numpy import zeros
# variables
T = [371.4, 378 ,383 ,388, 393, 398.6]
Pas = [101.3, 125.3, 140 ,160, 179.9, 205.3]
Pbs = [44.4, 55.6, 64.5, 74.8, 86.6, 101.3]
Ptotal = 101.3 #kPa
# Calculation
x = zeros(6)
y = zeros(6)
for i in range(6):
x[i] = (Ptotal - Pbs[i])/(Pas[i] - Pbs[i])
y[i] = x[i] * Pas[i] / Ptotal
# Result
#subplot(2,1,1)
plot(x,T,'-o')
plot(y,T,'-x')
suptitle("Boiling point diagram")
xlabel("Mole fraction, x or y")
ylabel("Temperature, K")
show()
# part 2
# variables
T = [371.4, 378, 383, 388, 393, 398.6]
Pas = [101.3, 125.3, 140, 160, 179.9, 205.3]
Pbs = [44.4, 55.6, 64.5, 74.8, 86.6, 101.3]
Ptotal = 101.3 #kPa
x = zeros(6)
y = zeros(6)
# Calculation
for i in range(6):
x[i] = (Ptotal - Pbs[i])/(Pas[i] - Pbs[i])
y[i] = x[i] * Pas[i] / Ptotal
w = x
# Result
#subplot(2,1,2)
plot(x,w)
plot(x,y,'-o')
suptitle("Equilibrium curve")
xlabel("x, mole fraction in liquid")
ylabel("y, mole fraction in vapour")
show()
import math
# variables
p = 100 # pressure Kpa
# from table
n_heptaneA = 13.8587
n_hexaneA = 13.8216
n_heptaneB = 2911.32
n_hexaneB = 2697.55
n_heptaneC = 56.51
n_hexaneC = 48.78
xA = .25
# Calculations and Results
# for T = 360 Initial guess
T1 = 360
lnPaS = n_hexaneA - (n_hexaneB/(T1- n_hexaneC))
PaS = round(math.e**lnPaS,2)
lnPbS = n_heptaneA - (n_heptaneB/(T1- n_heptaneC))
PbS = round(math.e**lnPbS,2)
P = xA*PaS + (1 - xA)*PbS
print "P = %.1f kPa" %P
# Since total pressure < 100 Kpa, equilibrium temperature is not equal to 360K.
# for T = 365 - Assume
T1 = 365
lnPaS = n_hexaneA - (n_hexaneB/(T1- n_hexaneC))
PaS = round(math.e**lnPaS,2)
lnPbS = n_heptaneA - (n_heptaneB/(T1- n_heptaneC))
PbS = round(math.e**lnPbS,2)
P = xA*PaS + (1 - xA)*PbS
print "P = %.2f kPa"%P
# As the pressure > 100 kPa, the temperature lies between 360 and 365 K.
# for T = 361.125 -- assumption
T1 = 361.125
lnPaS = n_hexaneA - (n_hexaneB/(T1- n_hexaneC))
PaS = round(math.e**lnPaS,2)
lnPbS = n_heptaneA - (n_heptaneB/(T1- n_heptaneC))
PbS = round(math.e**lnPbS,2)
P = xA*PaS + (1 - xA)*PbS
print "P = %.f kPa"%P
print "Therefore, the bubble point temperature = %.3f K"%T1 # last assumed for T1
# Part b
Pa = xA*PaS
Ya = Pa/P
print "Partial pressure of n-Hexane in vapour at the bubble point is = %.2f kPa"%Pa
print "Mole fraction of hexane in the vapour is Ya = %.4f"%Ya
print "The vapour contains %.2f %% hexane and %.2f %% heptane."%(Ya*100,(1-Ya)*100)
import math
# Variables
#lnPas = 14.5463 - 2940.46/(T - 35.93)
#lnPbs = 14.2724 - 2945.47 / (T - 49.15)
#xa = (P - Pbs)/(Pas - Pbs)
#Ya = Pas * (P - Pbs)/(P * (Pas - Pbs))
Ya = 0.4 # vapour phase
P = 65. #kPa
#various temperature value are assumed and tried till LHS = RHS, we get
T = 334.15 #K
# Calculation
Pas = math.exp(14.5463 - 2940.46/(T - 35.93))
Pbs = math.exp(14.2724 - 2945.47 / (T - 49.15))
xa = (P - Pbs)/(Pas - Pbs)
# Result
print "(a)The Dew point temperature at 65 kPa = ",T,"K"
print " Concentration of the first drop of liquid = %.2f"%xa
T1 = 327. #K
Pas1 = math.exp(14.5463 - 2940.46/(T1 - 35.93))
Pbs1 = math.exp(14.2724 - 2945.47 / (T1 - 49.15))
xa1 = Ya * Pbs1 / (Pas1 - Ya*(Pas1 - Pbs1))
P1 = xa1 * Pas1 / Ya
print "(b)The dew point pressure at 327 K = %.2f kPa"%P1
print " Concentration at 327K = %.4f"%xa1
# variables
MW = 44.032 # mole fraction of acetaldehyde
Mwater = 18.016
x = 2. #% acetaldehyde weight
Pa = 41.4 #kPa solution
# Calculation
Mfr = (x/MW)/(x/MW + (100-x)/Mwater)
#henry's law gives Pa = Ha * xa
Ha = Pa / Mfr
Molality = 0.1
Mfr1 = Molality / (1000/Mwater + Molality)
Pa1 = Ha * Mfr1
# Result
print "Partial Pressure = %.f kPa"%Pa1
import math
# Variables
#1 - pentane, 2 - hexane, 3 - heptane
x1 = 0.6
x2 = 0.25
x3 = 0.15
A1 = 13.8183
A2 = 13.8216
A3 = 13.8587
B1 = 2477.07
B2 = 2697.55
B3 = 2911.32
C1 = 39.94
C2 = 48.78
C3 = 56.51
#As raoults law is applicable, Ki = yi/xi = Pis/P
#yi = xi*Pis/P
#ln P = A- B/(T-C)
#Assuming,
P = 400. #kPa
T = 369.75 #K
# Calculation
Pas1 = math.exp(A1 - B1 / (T - C1))
Pas2 = math.exp(A2 - B2 / (T - C2))
Pas3 = math.exp(A3 - B3 / (T - C3))
Yi = (x1*Pas1 + x2*Pas2 + x3*Pas3)/P
print "(a)bubble point temperature of the mixture = ",T,"K"
y1 = x1*Pas1/P
y2 = x2*Pas2/P
y3 = x3*Pas3/P
# Result
print "(b)composition of n-pentane in vapour = %.2f %%"%(y1*100)
print "composition of n-hexane in vapour = %.2f %%"%(y2*100)
print "composition of n-heptane in vapour = %.2f %%"%(y3*100)
T1 = 300. #K
Ps1 = math.exp(A1 - B1 / (T1 - C1))
Ps2 = math.exp(A2 - B2 / (T1 - C2))
Ps3 = math.exp(A3 - B3 / (T1 - C3))
P1 = x1*Ps1 + x2*Ps2 + x3*Ps3
print "(c)Bubble point pressure = %.1f kPa"%P1
import math
# Variables
#1 - pentane, 2 - hexane, 3 - heptane
y1 = 0.6
y2 = 0.25
y3 = 0.15
A1 = 13.8183
A2 = 13.8216
A3 = 13.8587
B1 = 2477.07
B2 = 2697.55
B3 = 2911.32
C1 = 39.94
C2 = 48.78
C3 = 56.51
P = 400. #kPa
T = 300. #K
#As raoults law is applicable, Ki = yi/xi = Pis/P
#xi = yi*P/Pis
#ln P = A- B/(T-C)
#Assuming,
T1 = 385.94 #K
# Calculation
Pas1 = math.exp(A1 - B1 / (T1 - C1))
Pas2 = math.exp(A2 - B2 / (T1 - C2))
Pas3 = math.exp(A3 - B3 / (T1 - C3))
# Result
print "(a)Dew point temperature of the mixture = ",T1,"K"
Ps1 = math.exp(A1 - B1 / (T - C1))
Ps2 = math.exp(A2 - B2 / (T - C2))
Ps3 = math.exp(A3 - B3 / (T - C3))
P1 = 1/(y1/Ps1 + y2/Ps2 + y3/Ps3)
print "(b)Dew point pressure = %.2f kPa"%P1
# variables
#1 - methanol, 2 - ethanol, 3 - propanol
x1 = 0.45
x2 = 0.3
x3 = 1 - (x1 + x2)
P = 101.3 #kPa
# by drawing the temperature vs vapour pressure graph and interpolation,assuming,
T = 344.6 #K
Ps1 = 137.3
Ps2 = 76.2
Ps3 = 65.4
# Calculation
y1 = x1 * Ps1 / P
y2 = x2 * Ps2 / P
y3 = x3 * Ps3 / P
# Result
print "(a)Bubble point temperature = ",T,"K"
print "Composition of methanol in vapour = %.f %%"%(y1*100)
print "Composition of ethanol in vapour = %.1f%%"%(y2*100)
print "Composition of propanol in vapour = %.1f%%"%(y3*100)
#again, for xi = 1
T1 = 347.5 #K
P1 = 153.28
P2 = 85.25
P3 = 73.31
xa = x1 * P / P1
xb = x2 * P / P2
xc = x3 * P / P3
print "(b)Dew point temperature = ",T1,"K"
print "Composition of methanol in liquid = %.1f %%"%(xa*100)
print "Composition of ethanol in liquid = %.1f %%"%(xb*100)
print "Composition of propanol in liquid = %.1f %%"%(xc*100)
# variables
xp = 0.25 # propane
xnb = 0.4 # n-butane
xnp = 0.35 # n-pentane
P = 1447.14 #kPa
#assuming temperatures 355.4 K and 366.5 K , corresponding Ki
# values are found from nomograph and total Ki value are 0.928 and 1.075 resp, thus bubble point temperature lies between, using interpolation bubble point temperature is found to be,
Tb = 361. #K
print "(a) The buuble point temperature = ",Tb,"K"
# Calculation
#At 361,
Kip = 2.12
Kinb = 0.85
Kinp = 0.37
xp1 = Kip * xp
xnb1 = Kinb * xnb
xnp1 = Kinp * xnp
# Result
print "concentration of propane at bubble point = ",xp1
print "concentration of n-butane at bubble point = ",xnb1
print "concentration of n-pentane at bubble point = %.3f"%xnp1
#At dew point Yi/Ki = 1, at 377.6K this is 1.1598 and at 388.8K
# it is 0.9677, by interpolation dew point is found to be
Td = 387. #K
Kip1 = 2.85
Kinb1 = 1.25
Kinp1 = 0.59
yp1 = xp/Kip1
ynb1 = xnb/Kinb1
ynp1 = xnp/Kinp1
print "(b) The dew point temperature = ",Td,"K"
print "concentration of propane at dew point = %.4f"%yp1
print "concentration of n-butane at dew point = %.4f"%ynb1
print "concentration of n-pentane at dew point = %.4f"%ynp1
#summation zi / (1 + L/VKi)= 0.45, using trial and error, we find
T = 374.6 #K
L = 0.55
V = 0.45
Kip2 = 2.5
Kinb2 = 1.08
Kinp2 = 0.48
t = (xp/(1+L/(V*Kip2)))+(xnb/(1+L/(V*Kinb2))) + (xnp/(1+L/(V*Kinp2)))
yp2 = (xp/(1+L/(V*Kip2)))/t
ynb2 = (xnb/(1+L/(V*Kinb2)))/t
ynp2 = (xnp/(1+L/(V*Kinp2)))/t
xp2 = (xp - V * yp2)/L
xnb2 = (xnb - V * ynb2)/L
xnp2 = (xnp - V * ynp2)/L
print "(c)Temperature of the mixture = ",T,"K"
print "vapour phase concentration of propane = %.4f"%yp2
print "vapour phase concentration of n-butane = %.4f"%ynb2
print "vapour phase concentration of n-pentane = %.4f"%ynp2
print "liquid phase concentration of propane = %.4f"%xp2
print "liquid phase concentration of n-butane = %.4f"%xnb2
print "liquid phase concentration of n-pentane = %.4f"%xnp2
# variables
P = 93.30 #kPa pressure
T1 = 353. #K temperature
T2 = 373. #K temperature
Pwater1 = 47.98 #kPa pressure of water
Pwater2 = 101.3 #kPa
Pliq1 = 2.67 #kPa pressure of liquid
Pliq2 = 5.33 #kPa
# Calculation
T = T1 + (T2 - T1)*(P - (Pwater1 + Pliq1))/(Pwater2 + Pliq2 - (Pwater1 + Pliq1))
# Result
print "(a)The equilibrium temperature = %.1f K"%T
Pwater = 88.50
y = Pwater * 100 /P
print "(b)Water vapour in vapour mixture = %.2f %%"%y
%matplotlib inline
from matplotlib.pyplot import *
from numpy import *
# variables
#the three phase temperature is first find out, which comes to be 342K, the
# corresponding Ps1 = 71.18, Ps2 = 30.12
T = [342, 343, 348, 353, 363, 373]
Ps2 = [30.12, 31.06, 37.99, 47.32, 70.11, 101.3]
Ps1 = [71.18, 72.91, 85.31, 100.5, 135.42, 179.14]
P = 101.3 #kPa
y1 = zeros(6)
y2 = zeros(6)
# Calculation
for i in range(6):
y1[i] = 1 - (Ps1[i])/P
for i in range(6):
y2[i] = 1 - (Ps2[i])/P
# Result
plot(y2,T)
plot(1-y1,T)
suptitle("temperature composition diagram")
xlabel("x,y mole fraction of benzene")
ylabel("Temperature")
show()
import math
# Variables
T = 379.2 #K solution
P = 101.3 #kPa
Ps = 70. #kPa solution
Molality = 5
# Calculation
Pws = math.exp(16.26205 - 3799.887/(T - 46.854))
k = P / Pws
Pws1 = Ps / k
T1 = 3799.887 / (16.26205 - math.log( Pws1)) + 46.854
# Result
print "Boiling point of the solution = %.1f K"%T1