In [1]:

```
# solution
# Variables
# Using conversion factors from table 1.3 (Pg 9)
q1 = 75. # [gallon/min] (volumetric flow rate)
q2 = 75./(60*.219969) # [dm**3/s]
row = 0.8 # [kg/dm**3]
# Calculation
q3 = q2*row # [kg/s] (mass flow rate)
# Result
print "mass flow rate = ",q3," [kg/s] "
```

In [2]:

```
import math
# solution
# Variables
qm = 2000. # [kg/h] (mass flow rate)
d1 = 3.068 # [in] (internal dia of pipe)
# Calculation
# Using conversion factors from table 1.3 (Pg 9)
d2 = 3.068/.0393701 # [mm]
A = ((math.pi/4)*d2**2)/10**6 # [m**2] (cross section area)
# Using steam tables; Appendix IV.3
v = 0.46166 # [m**3/kg] (sp. vol. of steam at 440 kPa)
qv = (qm*v)/3600. # [m**3/s]
vs = qv/A # [m/s]
# Result
print "velocity of the steam in the pipeline is ",vs," m/s"
```

In [3]:

```
# solution
# Variables
m = 2000. # [lb] (mass flow rate)
t = 24. #[hr]
lf = 144. # [Btu/lb] (latent heat of fusion)
# Calculation
# Using conversion factors from table 1.3 (Pg 9)
TR = (m*lf*.251996*4.184)/(3600*24.)
# Result
print "1 TR = ",TR," kW"
```

In [4]:

```
# solution
# Variables
# C = 89.2*A*(T/M**).5 [ft**3/s]
k = 89.2
C1 = 1. # [ft**3/s]
# Calculation
# Using conversion factors from table 1.3 (Pg 9)
C2 = 35.31467*C1
T1 = 1. #[dgree R]
T2 = 1.8*T1 # [K]
A1 = 1. # [ft**2]
A2 = 10.76391
k2 = (k*A2*(1.8)**.5)/35.34167
# Result
print "eq in SI becomes C = ",k2,"*T/M**.5 [m**3/s]"
```