# solution
# Variables
# basis pumping of 1 l/s of water
Hadd = 52. # kW
Hlost = 21. # kW
# Calculation
fi = Hadd - Hlost # kW
p1 = 101325. # Pa
p2 = p1
Z1 = -50 # m
Z2 = 10 # m
g = 9.80665 # m/s sq
gc = 1 # kg.m/(N.s sq)
row = 1 # kg/l
W = 1.5*.55 # kW
# energy balance b/w A and B
# dE = E2-E1 = W + Q + (Z1-Z2)*(g/gc)*qm
dE = 31.237 # kW
# Result
print "Increase in internal energy between the storage tank and the bottom of the well = ",dE," kW."
# solution
# Variables
# using table 5.1
# basis 1 kmol of methane
T1 = 303.15 # K
T2 = 523.15 # K
# Calculation
# using eq 5.17
H = 19.2494*(T2-T1) + 52.1135*10**-3*(T2**2-T1**2)/2 + \
11.973*10**-6*(T2**3-T1**3)/3 - 11.3173*(T2**4-T1**4)*10**-9/4 # kJ
# Result
print " Heat added = ",H," kJ/kmol methane."
# solution
# Variables
# basis 1 kmol methane at 25 bar
Pc = 46.04 # bar
Tc = 190.5 # K
Pr = 25/Pc
# Calculation
# H-Ho = intgr(from303.15 to 523.15){CmpR dT}
# solving it by simpson's rule
HE = 255.2 # kJ/kmol
H = 9175.1 + HE
# Result
print " Heat added = ",H," kJ/kmol of methane."
# solution
# Variables
# using table 5.3
# .25 kg/s toulene heated from 290.15K to 350.15K
qm = .25/92 # kmol/s
# Calculation
# reference 7
fi = 2.717*10**-3*(1.8083*(350.15-290.15) + 812.223*10**-3*(350.15**2-290.15**2)/2 \
- 1512.67*10**-6*(350.15**3-290.15**3)/3 + 1630.01*10**-9*(350.15**4-290.15**4)/4)
# Result
print " Heat required to be added to toulene = ",fi," kW."
# solution
# Variables
# basis 1kg of 20% NaOH sol
# referring to fig 5.4
C11 = 3.56 # kJ/kg.K at 280.15K
C12 = 3.71 # kJ/kg.K at 360.15K
# Calculation
C1m = (C11+C12)/2
H = 1*C1m*(360.15-280.15) # kJ
# Result
print " Heat required to be added = ",H,"kJ."
# solution
# Variables
# basis 1kg Diphyl A-30
Q = .7511*(553.15-313.15) + 1.465*10**-3*(553.15**2-313.15**2)/2 # kJ/kg
fi = Q*4000 # kJ/h for mass flowrate 4000 kg/h
# Calculation
Clm = (1.1807+1.5198)/2
fi1 = Clm*(553.15-313.15)*4000/3600. # kJ/h
err = (fi1-Q)*100/Q
# Result
print " Heat to be supplied = ",fi1," kW Percent error = ",err,"."
# solution
# Variables
T1 = 298.15 # K
T2 = 775.15 #K
# Calculation
# using eq 5.17
Q = 28.839*(T2-T1)+2.0395*10**-3*(T2**2-T1**2)/2 + \
6.9907*10**-6*(T2**3-T1**3)/3 - 3.2304*10**-9*(T2**4-T1**4)/4 # kJ/kmol
# Result
print " Heat content of 1 kmol of gas mixture at 298K = ",Q," kJ/kmol."
# solution
# Variables
# basis 8000 kg/h mixture is to be cooled
qn1m = .118*8000 # kg/h
qn1 = qn1m/93.1242 # kmol/h
qn2m = 8000-qn1m # kg/h
qn2 = qn2m/18 # kmol/h
T1 = 373.15 #K
T2 = 313.15 #K
# Calculation
fi = qn1*(206.27*(T1-T2)-211.5065*10**-3*(T1**2-T2**2)/2+564.2902*10**-6*(T1**3-T2**3)/3) \
+ qn2*(50.845*(T1-T2)+213.08*10**-3*(T1**2-T2**2)/2-631.398*10**-6*(T1**3-T2**3)/3 \
+648.746*10**-9*(T1**4-T2**4)/4) # kJ/h
# Result
print " Heat removal rate of subcooling zone of the condenser = ",fi," kJ/h."
# solution
# Variables
# (a)
T = 305.15 #K
# Calculation
Pv1 = 10**(4.0026-(1171.530/(305.15-48.784))) # bar
# (b)
T = 395.15
Pv2 = 10**(3.559-(643.748/(395.15-198.043))) # bar
# Result
print " a V.P. of n-hexane at 305.15K = ",Pv1,\
" bar. \nb V.P. of water at 395.15K = ",Pv2," bar."
import math
# solution
# Variables
# (a)
Pc = 3732. # kPa
Tc = 630.3 # K
Tb = 417.6 # K
TBr = Tb/Tc
# Calculation
lambdav = 8.314472*417.6*(1.092*(math.log(3732)-5.6182)/(.930-.6625))
# (b)
T1 = 298.15 #K
lambdav1 = 36240*((630.3-298.15)/(630.3-417.6))**.38
# Result
print " a Latent heat of vaporization at Tb using Riedel eq is ",lambdav,\
" kJ/kmol. \nb Latent heat of vaporizaation at 298.15 K using Watson eq is ",\
lambdav1," kJ/kmol."
import math
# solution
# Variables
# (a)
Pc = 61.37 # bar
Tc = 514. #K
Tb = 351.4
P = 1 # atm
TBr = Tb/Tc
# Calculation
# Riedel eq
lambdav1 = 8.314472*Tb*1.092*(math.log(6137)-5.6182)/(.930-TBr)
# NIST eq
lambdav2 = 50430*math.exp(-(-.4475*TBr))*(1-TBr)**.4989
# (b)
T1 = 298.15
TBr1 = T1/Tc
# Watson eq
lambdav21 = 38563*((514-298.15)/(514-351.4))**.38
# NIST eq
lambdav22 = 50430*math.exp(-(-.4475*TBr1))*(1-TBr1)**.4969
# Result
print " a \nLatent heat of vaporization at Tb using Riedel eq is ",lambdav1,\
" kJ/kmol \nNIST eq is ",lambdav2,\
" kJ/kmol \nb Latent heat of vaporization at 298.15 K using Watson eq is ",lambdav21,\
" kJ/kmol \nNIST eq is ",lambdav22," kJ/kmol"
import math
# solution
# Variables
# using Appendix IV.2
Ps1 = 75.
Ps2 = 80.
T1 = 563.65
T2 = 568.12
T = 565.15
# Calculation
Ps = 75*math.exp((T2*(T-T1)*math.log(80./75)/(T*(T2-T1))))
# Result
print " Saturation Pressure of steam at 565.15K is ",Ps," bar."
# solution
# Variables
# basis 1 kmol equimolar mix
npent = .5 # kmol
nhex = .5 # kmol
P = 101.325 # kPa
x1 = .5
x2 = x1
Ts1 = 309.2 # K
Ts2 = 341.9 # K
# Calculation
T1 = (Ts1+Ts2)/2.
# using these data, we get table 5.10 and 5.11
Tbb = 321.6 # K
Tdp = 329.9 # K
# Result
print " Bubble point = ",Tbb,\
" K and Dew point = ",Tdp," K."
from numpy import poly1d,roots
# solution
# Variables
# basis 1000 kg/h of condensate at the saturation temperature corresponding to 8 bar a
# using Appendix IV.2
H = 720.94 # kJ/kg
Hm = 419.06 # kJ/kg
# Calculation
x = poly1d(0,'x')
condensate = 1000-x
Hcondensate1 = 1000*H
Hcondensate2 = condensate*419.06
Ht = x*2676.
p = Hcondensate2+Ht-Hcondensate1
# Result
print " The quantity of flash steam produced = ",roots(p)[0]," kg/h."
# solution
from numpy import poly1d, roots
# Variables
qv1 = 50. # l/s
qm = qv1*1.08 # kg/s
fi = qm*3.08*(263.15-258.15) # kW
lv = 384.19-168.7 # kJ/kg
# Calculation
qm2 = fi/lv
H = 256.35 # kJ/kg
x = poly1d(0,'x')
p = H*(qm2+x) - 168.7*qm2-x*384.19
a = qm2+roots(p)[0]
# Result
print " Flow of vapor from he chiller = ",a," kg/s."
# solution
# Variables
# basis liquifaction capacity = 0.116 kg/s
p1 = 101. # kPa
Ts1 = 239.15
lv1 = 288.13 # kJ/kg
p2 = 530. # kPa
Ts2 = 290.75 # K
lv2 = 252.93 # kJ/kg
# Calculation
# referring to table 5.3 and using eq 5.21
H1 = -39.246*(Ts2-Ts1)+1401.223*10**-3*(Ts2**2-Ts1**2)/2-6047.226* \
10**-6*(Ts2**3-Ts1**3)/3+8591.4*10**-9*(Ts2**4-Ts1**4)/4 # kJ/kmol
T3 = 313.15
H2 = (28.5463*(T3-Ts1)+23.8795*10**-3*(T3**2-Ts1**2)/2-21.3631* \
10**-6*(T3**3-Ts1**3)/3+6.4726*10**-9*(T3**4-Ts1**4)/4)/70.903 # kJ/kg
fi2 = .116*H2
Cl2evp = fi2/lv1 # kg/s
Cl2recy = Cl2evp/(1-.185)
R = Cl2recy/.116 # kg/kg fresh feed
# T4/T1 = (p2/p1)**[(gamma-1)/gamma]
gm = 1.355
p22 = 326.3
p21 = 101.
T4 = Ts1*(p2/p1)**((gm-1)/gm)
T5 = 313.15
fi3 = 1.88*10**-3*(343.1+91.6-26.2+2.5) # kW
Fwater1 = fi3/(8*4.1868) # kg/s
# similarly
T6 = 379.9
fi4 = 1.88*10**-3*(28.5463*(T6-T5)+23.8795*10**-3*(T6**2-T5**2)/2-21.3631 \
*10**-6*(T6**3-T5**3)/3+6.4726*10**-9*(T6**4-T5**4)/4) # kW
Fwater2 = fi4/(8*4.1868) # kg/s
Wreq = Fwater1+Fwater2
fi5 = 1.88*10**-3*(28.5463*(T5-Ts2)+23.8795*10**-3* \
(T5**2-Ts2**2)/2-21.3631*10**-6*(T5**3-Ts2**3)/3+6.4726 \
*10**-9*(T5**4-Ts2**4)/4) +.1333*252.93 # kW
# Result
print " a Recycle ratio = ",R," kg Cl2/kg fresh feed \nb Cooling water required at interface = "\
,Fwater1," kg/s after cooler = ",Wreq," kg/s \nc Refrigiration load of chiller = ",fi5," kW."
# solution
# Variables
# basis 100 kg of tin
T1 = 303.15
T2 = 505.15
n = 100/118.7 # kmol
# Calculation
# Q1 = n*[intgr from T1 to T2 (Cms dT)]
Q1 = 4973.3 # kJ
lf = 7201.
Q2 = n*lf # kJ
Q = Q1+Q2
lv = 278. # kJ/kg
vp = Q/lv # kg
# Result
print " Quantity of eutectic mixture condensed = ",vp,\
" kg per 100 kg of tin melted at its melting point."
# solution
# Variables
Ts1 = (438.2+436)/2.
Ta = 300.
# Calculation
fi1 = .045*(Ts1-Ta)*3600.
theta1 = 307293/fi1 #h
Ts2 = (436+434)/2.
fi2 = .045*(Ts2-Ta)*3600.
theta2 = 302415./fi2
Ts3 = (434+432.1)/2
fi3 = .045*(Ts3-Ta)*3600.
theta3 = 313859/fi3
theta = theta1+theta2+theta3
# Result
print " total time required = ",theta," hrs."
from numpy import poly1d, roots
# solution
# Variables
H1 = 482.9 # kJ/kg
H2 = 273.4
fi1 = 100*(H1-H2) # kJ/h
T1 = 313.15
T2 = 403.15
# Calculation
fi11 = 21.3655*(T2-T1)+64.2841*10**-3*(T2**2-T1**2)/2-41.0506*10**-6 \
*(T2**3-T1**3)/3+9.7999*10**-9*(T2**4-T1**4)/4 # kJ/h
# at 20 MPa
h1 = 211.1
Ts = 277.6
H11 = 427.8
x = poly1d(0,'x')
p = x*h1+(100-x)*H11-100*H2
a = roots(p)[0]
fi2 = (100-a)*(H11-h1) # kJ/h
h2 = -148.39
H3 = 422.61
y = poly1d(0,'y')
p1 = 100*176.18-(100-y)*H3+h2*y
b = roots(p1)[0]
fi3 = 100*(h1-176.8)
H = fi3+24021
H4 = H/(100-43.16)
# from ref 23
T = 262.15
# Result
print "a Yield of dry ice = ",b,\
" kg. \nb Percent liquifaction = ",a,\
". \nc Temp of vented gas = ",T," K."
# solution
# Variables
# basis 200 kg/h of Sulphur firing
F = 200./32 # kmol/h
O2req = 6.25*1.1
airin = O2req/.21
# Calculation
N2in = airin-O2req
T1 = 1144.15
T2 = 463.15
fi = 788852.2 # kJ/h
H = 15*4.1868+1945.2
qm = fi*.9/2008 # kg/h
# Result
print " Amount of steam produced = ",qm," kg/h."
# solution
# Variables
# enthalpy at Tbb
Tbb = 321.6
T1 = 298.15
# Calculation
H1 = 65.4961*(Tbb-T1)+628.628*10**-3*(Tbb**2-T1**2)/2-1898.8*10**-6*(Tbb**3-T1**3)/3 \
+3186.51*10**-9*(Tbb**4-T1**4)/4 # kJ/kmol
H2 = 31.421*(Tbb-T1)+976.058*10**-3*(Tbb**2-T1**2)/2-2353.68* \
10**-6*(Tbb**3-T1**3)/3+3092.73*10**-9*(Tbb**4-T1**4)/4 # kJ/kmol
Hsol = (H1+H2)/2 # kJ/kmol
# enthalpy at Tdp
lv1 = 25790*((469.7-329.9)/(469.7-309.2))**.38
lv2 = 28850*((507.6-329.9)/(507.6-341.9))**.38
Tdp = 329.9
H21ig = 65.4961*(Tdp-T1)+628.628*10**-3*(Tdp**2-T1**2)/2-1898.8*10**-6* \
(Tdp**3-T1**3)/3+3186.51*10**-9*(Tdp**4-T1**4)/4 + lv1 # kJ/kmol
H22ig = 31.421*(Tdp-T1)+976.058*10**-3*(Tdp**2-T1**2)/2-2353.68* \
10**-6*(Tdp**3-T1**3)/3+3092.73*10**-9*(Tdp**4-T1**4)/4 +lv2 # kJ/kmol
Hmixig = (H21ig+H22ig)/2
# Result
print " a H = ",Hsol," kJ/kmol b H = ",Hmixig," kJ/kmol"
# solution
# Variables
H1 = 23549. #kJ/kmol
H2 = 16325.
H3 = 28332.
# Calculation
H4 = .4*H2+.6*H3
# Result
print "Enthalpy of vapor-liquid mixture after flashing = ",H4," kJ/mol."
# solution
# Variables
# basis feed gas = 12000 Nm**3 = 535.4 kmol/h
T1 = 147.65 # K
n1 = 535.4*.3156 # kmol/h HP tail gas stream
T = 118.5 # K
# Calculation
n2 = (535.4-n1)*.0602 # kmol/h LP tail stream
n3 = 535.4-n2-n1 # kmol/h product H2 stream
p = 315.35*100/n3
# Result
print " Purity of product H2 stream = ",p," percent."
# solution
# Variables
# fi1 = integr (from 304.15 to 313.15) {11831.6+24997.4*10T**-3-5979.8*10**-6T**2-31.7*10**-9T3}dt
fi1 = 170787.7 # kJ/h
# Calculation
fi2 = 535.4*12086 - (344.36*8743.2+168.97*18036+22.07*15892) # kJ/h
# Result
print " a Refrigiration requirement = ",fi1,\
" kJ/h b Refrigiration requirement based on real enthalpies = ",fi2," kJ/h."
# solution
# Variables
# basis 100 kmol/h of benzene feed rate
Cl2 = .4*100
HClp = 40.
Benzenecon = 37.
MCBp = 100*.37*.9189
# Calculation
DCBp = Benzenecon-MCBp
unreactBenzene = 100-Benzenecon
Nt = HClp + MCBp + DCBp + unreactBenzene
# using eq xi = Ni/(L(1-K1)+NtKi) and sigma xi = 1
L = 89.669 # kmol/h
V = Nt - L
# Result
print " Liquid product stream = ",L," kmol/h Vapor product stream = ",V," kmol/h"
# solution
# Variables
# 2C + 2O2 = 2CO2 A
# 2H2 + O2 = 2H2O B
# C2H4 + 3O2 = 2CO2 + 2H2O C
# A+B-C gives
# 2C(g) + 2H2 = C2H4(g) D
# Calculation
H = -2*393.51-2*241.82+1323.1 # kJ/mol
# Result
print " Heat of formation of Ethylene is ",H," kJ/mol."
# solution
# Calculation
Hc = 2*(-393.51)-887.811+2*(-285.83)-(-73.6+0) #kJ/mol
# Result
print " Heat of combustion of ethyl mercaptan = ",Hc," kJ/mol."
# solution
# Variables
lv1 = 26694. # kj/kmol
Tc = 466.74
# Calculation
lv2 = lv1*((Tc-298.15)/(Tc-307.7))**.38/1000 # kJ/mol
Hf = -252. # kJ/mol
Hf1 = Hf-lv2 # kJ/kmol
# Result
print "Heat of formation of liquid di ethyl ether = ",Hf1," kJ/mol."
# solution
# Variables
# basis 1 kg motor spirit
G = 141.5/(131.5+64)
# Calculation
# r = C/H
r = (74.+15*G)/(26-15*G)
C = r/6.605 # C content of motor spirit
H2 = 1-C
O2req = C+H2
Hf = 44050-27829-18306. # kJ/kg
# Result
print " Heat of formation of motor spirit = ",Hf," kJ/kg."
# solution
# Variables
# basis 1 kmol of styrene
dH = 241749-189398. # kJ/mol
# Calculation
Cmpn = dH/(600-298.15) # kJ/kmol K
# Result
print " Mean heat capacity between 600K and 298.15 K is ",Cmpn," kJ/kmol K."
# solution
# Calculation
# basis 1 mol of SiO2 reacted
Hf = (-2879+3*(-296.81)+3*0/2)-(3*(-1432.7)+1*(-903.5)) # kJ/mol SiO2
# Result
print " Heat of reaction = ",Hf," kJ/mol SiO2."
# solution
# Variables
# basis 100 kg of 2% ammonia solution
NH3 = 2. # kg
H2O = 98. # kg
# Calculation
Hr = -361.2-(-45.94-285.83) # kJ/mol NH3 dissolved
Hd = -(Hr*2*1000/17.0305) # kJ/100 kg sol.
# Result
print " heat of reaction = ",Hd," kJ/100 kg solution."
# solution
# Variables
# basis 1 kmol of SO2 reacted
a = 22.036-24.771-.5*(26.026)
b = (121.624-62.948-.5*11.755)
c = (-91.876+44.258-.5*(-2.343))
d = (24.369-11.122-.5*(-.562))
Hr = -395720+296810. # kJ/kmol
# Calculation
Hro = Hr-a*298.15-b*10**-3*298.15**2/2-c*10**-6*298.15**3/3-d*10**-9*298.15**4/4.
T = 778.15
Hrt = -Hro-15.748*T+26.4*10**-3*T**2-15.48*10**-6*T**3+3.382*10**-9*T**4
# Result
print " Heat of reaction at 775K is ",Hrt," kJ/kmol."
# solution
# Calculation
Hr = -480-285.83+277.2+484.2 # kJ/mol
Hrt1 = Hr*1000 + (146.89+75.76-119.55-129.70)*75 # kJ/kmol
a = 4.2905+50.845-100.92-155.48
b = 934.378+213.08+111.8386+326.5951
c = -2640-631.398-498.54-744.199
d = 3342.58+648.746
Hro = Hr*1000+a*(-298.15)+b*10**-3*(-298.15**2)/2+ \
c*10**-6*(-298.15**3)/3+d*10**-9*(-298.15**4)/4
T = 373.15
Hrt = Hro+a*T+792.949*10**-3*T**2-1504.712*10**-6*T**3+997.832*10**-9*T**4
# Result
print " Heat of reaction at 373 K is ",Hrt," kJ/kmol reactant."
# solution
# Variables
T2 = 800.
T1 = 298.15
# Calculation
fi1 = 3614.577*(T2-T1)+305.561*10**-3*(T2**2-T2**2)/2+836.881*10**-6*(T2**3-T1**3)/3-393.707*10**-9*(T2**4-T1**4)/4 # kW
T3 = 875.
fi2 = 3480.737*(T3-T1)+754.347*10**-3*(T3**2-T2**2)/2+442.159*10**-6*(T3**3-T1**3)/3-278.735*10**-9*(T3**4-T1**4)/4 # kW
Hr = -98910. # kJ/kmol SO2 reacted by eg 5.33
fi3 = (8.8511-.351)*Hr/3600. # kW
dH = fi2/3600+fi3-fi1/3600.
# Result
print " Net enthalpy change = ",dH," kW."
# solution
# Variables
# basis 100 kmol outgoing gas mixture from scrubber
moistin = 3127.7*.015/18 # kmol
waterin = 40.2+moistin # kmol
# Calculation
# using tables 5.29 and 5.30
Hr = -27002658-(-26853359.)
Hr1 = Hr/246.4493 # kJ/kmol total reactants
# Result
print " Heat of reaction = ",Hr1," kJ/kmol total reactants."
# solution
# Variables
fi3 = 15505407. # kJ/h
lv = 296.2 # from table 5.6
Ht = 17131551. # kJ/h
# Calculation
r = Ht/lv # kg/h
# Result
print " Downtherm circulation rate = ",r," kg/h."
import math
# solution
# Variables
F = 100. # kmol/h feed rate of ethylene
Econ = .99*F
# Calculation and Result
Econ1 = Econ*.998
Econ2 = Econ-Econ1
Cl2con = Econ1+2*Econ2
Cl2in = F*1.1
Cl2s3 = Cl2in-Cl2con
HCls3 = Econ2
TCEp = Econ2
EDCp = Econ1
nC2H4 = 1
T = 328.15
pv1 = math.exp(4.58518-1521.789/(T-24.67)) # bar
pv2 = math.exp(4.06974-1310.297/(T-64.41)) # bar
xEDC = Econ1/(Econ1+Econ2)
xTEC = 1-xEDC
pEDC = 37.2*xEDC
pTEC = 12.64*xTEC
pCl2HClC2H4 = 1.6*100-pEDC-pTEC
yEDC = pEDC/160
yTEC = pTEC/160
nt = (Cl2s3+Econ2+1)*160/pCl2HClC2H4
nEDC = yEDC*nt
nTEC = yTEC*nt
print " Compositions of gas streams : "
print "Component Stream 3 Stream 5 Stream 4 Stream 6 "
print " Cl2 ",Cl2s3," ",Cl2s3
print " HCl ",HCls3," ",HCls3
print " C2H4 ",nC2H4," ",nC2H4
print " EDC ",nEDC," 0.2355 3.3947 98.5665"
print " TEC ",nTEC," Nil ",nTEC," ",TCEp
fi1 = (10.802*33.9+.198*29.1+1*43.6+3.6302*17.4+.0025*85.3)*(328.15-273.15)
fi2 = 35.053*1000*3.3947+39.58*1000*.0025
fi3 = (3.3947*129.4+.0025*144.4)*55/2
fi = fi1+ fi2+ fi3 # kJ/h
print " Heavy duty of Overhead condenser = ",fi," kJ/h. "
fi5 = (100*43.6+110*33.9)*(328.15-273.15)
fi6 = 3.6302*1000*33.6+.0025*1000*38.166
fi7 = (98.5665*129.4+.1988*144.4)*(328.15-273.15)
fi8 = 216845.5*98.802+392394.5*.198
ficol = fi5+fi8-fi1-fi6-fi7
print " Heavy duty of external cooler = ",ficol," kJ/h."
# solution
# Variables
To = 298.15
T1 = 483.15
# Calculation
# fi1 = intgr(from To to T1){12199.5+2241.4*10**-3*T+1557.7*10**-6*T**2-671.3*10**-9*T**3}dT
fi1 = 2455874.6 # kJ/h
dHr = 2*(-45.94) # kJ/mol N2 reacted
fi2 = 91.88*1000*23.168
fi3 = fi1+fi2
# fi3 = intgr(from To to T2){10713.9+3841*10**-3*T+1278.8*10**-6*T**2-752.6*10**-9*T**3}dT
# solving it
T2 = 657.41 # K
# Result
print "Temperature of the gas mixture leaving the reactor = ",T2," K."
# solution
# Variables
# basis 4 kmol of HCl gas
O2req = 1. # kmol
O2spply = 1.35*1
# Calculation
N2 = 1.35*79/21.
air = O2spply+N2
HClbrnt = .8*4
HCl = 4-HClbrnt
O2 = O2spply-.8
Cl2 = .8*2
H2O = .8*2
# Result
print " a) Composition of dry product gas stream : "
print " Component Dry product gas stream,kmol"
print " HCl ",HCl
print " O2 ",O2
print " Cl2 ",Cl2
print " H2O ",H2O
print " N2 ",N2
print "b) "
H2 = 114.4*1000*.8
# H2 = intgr(from 298.15 to T){286.554+12.596*10**-3*T+63.246*10**-6*T**2-25.933*10**-9*T**3}dT
# solving it
T = 599.5 # K
print " Adiabatic reaction temperature of product gas stream = ",T," K."
# solution
# Variables
# 1 kmol of EB vapors entering the reactor at 811.15 K
# (from 811.15 to T1)intgr{-36.72+671.12*10**-3*T-422.02*10**-6*T**2+101.15*10**-9*T**3}dT = (from T1 to 978.15)intgr{487.38+1.19*10**-3*T+198.16*10**-6*T**2-68.21*10**-9*T**3}dT
# we get
T1 = 929.72 # K
To = 298.15
H1 = 493405. # kJ
EBr = .35
# Calculation
Styrenep = EBr*.9
Benzeneb = EBr*.03
Ethyleneb = Benzeneb
Cb = EBr*.01
Toulened = EBr*.06
Hr1 = 147.36-29.92 # kJ/mol EB
Hr2 = 82.93+52.5-29.92
Hr3 = -29.92
Hr4 = 50.17-74.52-147.36 # kJ/mol styrene
dHr = 1000*(Hr1*(Styrenep+Toulened)+Hr2*Benzeneb+Hr3*Cb+Hr4*Toulened)
H2 = H1-dHr
# H2 = (from To t0 T2)intgr{Comp2dT
# we get
T2 = 798.79 # K
# Result
print " Adiabatic reaction T at the outlet of the reactor is ",T2," K."
# solution
# Variables
Hsol = 62.86 # kJ/mol solute
Mcrystal = 286.1414
# Calculation
Hcry = Hsol*1000/Mcrystal # kJ/kg solute
# Result
print " Heat of crystallization of 1 kg crystal is ",Hcry," kJ."
# solution
# Variables
Hf = -285.82 # kJ/mol of H2O
# Calculation
Hcryst = -4327.26-(-1387.08+10*Hf)
# Result
print " Heat of crystallization = ",Hcryst," kJ/mol."
# solution
# Variables
Hfs = -1094.33
Hfao = -1072.32
# Calculation
Hsol = Hfao-Hfs
# Result
print " Heat of solution of Boric acid = ",Hsol," kJ/mol."
# solution
# Variables
# (a)
Hf = -982.8
Hfcryst = -1053.904
# Calculation
Hdis = Hfcryst-Hf
# (b)
Hfcr = -3077.75
Hsol = Hfcryst+7*(-285.83)-(-3077.75)
# Result
print " a Hdissolulition = ",Hdis," kJ/mol ZnSO4. b Hsolution = ",Hsol," kJ/kmol."
# solution
# Variables
# using chart 5.16 we get
T = 329.5 # K
# Result
print " T = ",T," K."
# solution
# Variables
# basis 100(m1) kg 46% sol
NaOH = 46. # kg
H2O = 54. # kg
# Calculation
m2 = NaOH/.25
NaOHo = 25. # kg
H2Oo = 75. # kg
Hf1 = -453.138 # kJ/mol
Hf2 = -467.678 # kJ/mol
Hs = Hf2-Hf1
Hg = -Hs*1000*1.501
# using Appendix IV.1
Hw1 = 146.65
Hw2 = 104.9
Hadd = 84*(Hw1-Hw2)
H = Hg+Hadd
C1 = 3.55
T2 = 298.15+H/(184*C1) # K
# Result
print " Final sol T = ",T2," K."
# solution
# Variables
# basis 100 kg of sol with 32% N
MNH4NO3 = 80.0434
MNH2CONO2 = 60.0553
MN2 = 28.0134
# Calculation
na = 32/(60.9516)
Ureadis = 1.1758*na*MNH2CONO2 # kg
water = 100-(na*MNH4NO3+Ureadis)
ndis = 525.
m = ndis/water
HE1 = 40.3044-2.5962*m+.1582*m**2-3.4782*10**-3*m**3
HE = HE1*ndis
# Result
print "Heat effect of the sol = ",HE," kJ."
# solution
# Variables
Hmix = 896.
M1 = 88. # molar mass of n-amyl alcohol
M2 = 78. # molar mass of benzene
# Calculation
B = .473*M2
A = .527*M1
Ha = Hmix/A
Hb = Hmix/B
# Result
print " Integral heat of sol of n-amyl alcohol = ",Ha,\
" kJ/kg n-amyl alcohol and of benzene = ",Hb," kJ/kg benzene."
from numpy import poly1d, roots
# solution
# Variables
# from fig 5.18
Ta = 379.5 # K
dH = -274-(-106.5) # kJ/kg sol
Cm = 2.05 # kJ/kg K
dHc = Cm*(Ta-298.15)
# Calculation
# basis 100 kg of 93 % acid
# acid balance
x = poly1d(0,'x')
p = .93*100+x*.15-(100+x)*.77
y = roots(p)[0]
#from fig
y1 = 25.3
# Result
print "a Resultant T of 77 percent sol = ",Ta, \
" K. \nb Heat to be removed to cool it to 298.15 K = ",dH,\
" kJ/kg sol \nc By mean heat capacity method : ",dHc,\
" kJ/kg sol \nd Quantity of 15 percent acid to be mixed = ",y,\
" kg. \ne from fig : ",y1," kg."
# solution
# Variables
# basis 100 kg of 93% acid and 25.8 kg of 15% acid
Hfp = -814.
Hf1 = -830.
HE1 = Hf1-Hfp
Hf2 = -886.2
HE2 = Hf2-Hfp
Hf3 = -851.
HE3 = Hf3-Hfp
# Calculation
Hsol = .9876*1000*(-37)-(.9482*1000*(-16)+.0394*1000*(-72.2))
Hev = 100*(30-25)*1.6
Hcon = 25.8*25*3.7
netHev = -Hsol-Hcon+Hev
T = 298.15+netHev/(125.8*2.05)
# Result
print " Temp of sol = ",T," K."
# solution
# Variables
# basis 1000 kg of mixed acid
C11 = 2.45
# Calculation
H1 = -296.7+C11*(308.15-273.15)
C12 = 2.2
H2 = -87.8+C12*(308.15-273.15)
C13 = 1.45
H3 = -35.5+C13*(308.15-273.15)
C14 = 1.8
H4 = -148.9+C14*(308.15-273.15)
Hmix = 1000*H4-(76.3*H1+345.9*H2+577.7*H3)
# Result
print " Heat of mixing = ",Hmix," kJ."
# solution
# Variables
F = 1135.
Benzenef = 400*.993
# Calculation
HNO3con = Benzenef*63/78.
H1 = -186.5
C11 = 1.88
H11 = H1+C11*(298.15-273.15)
H2 = -288.9
C12 = 1.96
H22 = H2+C12*(298.15-273.15)
H3 = 0
C13 = 1.98
H33 = C13*(298.15-273.15)
Hr = -285.83+12.5-(-174.1+49.08)
Benzener = Benzenef/78.1118
fi = 903.84*H22+HNO3con*H33-F*H11+Benzener*Hr*1000 # kJ/h
# Result
print " Total heat exchanged = ",fi," kJ/h."
# solution
# Variables
# from ref 24
H = 1600.83
To = 273.15
h = 200.
Hf1 = -79.3 # table 5.59
Hf2 = -46.11
Hsol = Hf1-Hf2
# Calculation
Hg = Hsol*1000*140./17.0305
Raq = 140/.15 # kg/h
dT = Hg/(4.145*Raq)
T = -dT+303.
# Result
print " Temp of resultant sol = ",T," K."
# solution
# Variables
Hf1 = -80.14
Hf2 = -46.11
# Calculation
Hsol = Hf1-Hf2
Hg = Hsol*1000.*2/17.0305
# Result
print " Heat generated for making 2 percent solution = ",Hg," kJ/100 kg sol."
# solution
# Variables
fi3 = 15505407.
fi4 = 11395056.
fi5 = fi3-fi4 # kJ/h
# Calculation
fi6 = 111.375*62.75*1000
fi7 = 1063379.
fi8 = 5532.15*4.1868*(303.15-298.15)
fi9 = 9030.4*3.45*(323.15-298.15)
fi = fi5+fi6+fi8-fi7-fi9
# Result
print " Heat removal in the cooler = ",fi," kJ/h."
%matplotlib inline
# solution
from numpy import linspace
from matplotlib.pyplot import plot, show
# Variables
To = 273.15
T1 = 308.15
H1 = 124.8*(T1-To) # kJ/kmol
H2 = 134.9*(T1-To) # kJ/kmol
# Calculation
HE1 = .1*.9*(542.4+55.4*(.9-.1)-132.8*(.9-.1)**2-168.9*(.9-.1)**3) # kJ/kmol of mix
Ha = HE1+H1*.1+H2*.9
HE2 = .2*.8*(542.4+55.4*(.8-.2)-132.8*(.8-.2)**2-168.9*(.8-.2)**3) # kJ/kmol of mix
Hb = HE2+H1*.2+H2*.8
HE3 = .3*.7*(542.4+55.4*(.7-.3)-132.8*(.7-.3)**2-168.9*(.7-.3)**3) # kJ/kmol of mix
Hc = HE3+H1*.3+H2*.7
HE4 = .4*.6*(542.4+55.4*(.6-.4)-132.8*(.6-.4)**2-168.9*(.6-.4)**3) # kJ/kmol of mix
Hd = HE4+H1*.4+H2*.6
HE5 = .5*.5*(542.4+55.4*(.5-.5)-132.8*(.5-.5)**2-168.9*(.5-.5)**3) # kJ/kmol of mix
He = HE5+H1*.5+H2*.5
HE6 = .6*.4*(542.4+55.4*(.4-.6)-132.8*(.4-.6)**2-168.9*(.4-.6)**3) # kJ/kmol of mix
Hf = HE6+H1*.6+H2*.4
HE7 = .7*.3*(542.4+55.4*(.3-.7)-132.8*(.3-.7)**2-168.9*(.3-.7)**3) # kJ/kmol of mix
Hg = HE7+H1*.7+H2*.3
HE8 = .8*.2*(542.4+55.4*(.2-.8)-132.8*(.2-.8)**2-168.9*(.2-.8)**3) # kJ/kmol of mix
Hh = HE8+H1*.8+H2*.2
HE9 = .9*.1*(542.4+55.4*(.1-.9)-132.8*(.1-.9)**2-168.9*(.1-.9)**3) # kJ/kmol of mix
Hi = HE9+H1*.9+H2*.1
HE10 = .0*1.*(542.4+55.4*(.0-1.)-132.8*(.0-1.)**2-168.9*(.0-1.)**3) # kJ/kmol of mix
Hj = HE10+H1+H2*0
x = linspace(0,1,100)
y = linspace(4300,5000,100)
y = 4721.5-57.4*x+1137.7*x**2-3993.6*x**3+3909.2*x**4-1351.2*x**5
# Result
plot(x,y)
show()
#title("H vs x1")
#xlabel("x1")
#ylabel("H (kJ/kg sol.)")
print " Enthalpy, kJ/kmol mix "
print " x1 HE H"
print " 0 0 ",H2
print " 0.1 ",HE1," ",Ha
print " 0.2 ",HE2," ",Hb
print " 0.3 ",HE3," ",Hc
print " 0.4 ",HE4," ",Hd
print " 0.5 ",HE5," ",He
print " 0.6 ",HE6," ",Hf
print " 0.7 ",HE7," ",Hg
print " 0.8 ",HE8," ",Hh
print " 0.9 ",HE9," ",Hi
print " 1.0 ",HE10," ",Hj
# solution
# Variables
# from graph drawn in 5.57 we can see
H1E1 = 300.
H1E2 = 63.
H2E1 = 30.
H2E2 = 214.
# Result
print " H1 at x1=0.3 is ",H1E1," kJ/kg sol \nH2 at x1=0.3 is ",H2E1,\
" kJ/kg sol \nH1 at x1=0.6 is ",H1E2," kJ/kg sol \nH2 at x1=0.6 is ",H2E2," kJ/kg sol."
# solution
# Variables
# basis 100 kg 96.1% H2SO4
# from table 5.64
m1SO3 = 78.4 # kg
m1H2O = 21.6
n1SO3 = m1SO3/80.063
n1H2O = m1H2O/18.015
# Calculation
# resultant sol has 23.2% H2SO4
m2SO3 = 19.
m2H2O = 81.
Mrsol = m1SO3*100./m2SO3
Mw = Mrsol-100.
w = Mrsol-m1SO3/18.015 # kmol
HEosol = n1SO3*(-56940.)+n1H2O*(-32657.) # kJ
HErsol = n1SO3*(-156168.)+w-(-335.)
HE = HErsol-HEosol # kJ/kg original acid
C = 3.43 # kJ/kg K
dT = -HE/(Mrsol*C)
T = 291.15+dT # K
# Result
print " Heat of dilution = ",HE," kJ/kg original solution \nFinal T of resultant solution = ",T," K."
# solution
# Variables
# basis 100 kg of original acid
lv = 333.7 # kJ/kg
# Calculation
H = -lv-18*4.1868
HE = (-64277-H*312.63)/100 # kJ/kg
# Result
print " Heat of dilution = ",HE," kJ/kg."