Chapter No.6:Torsion

Example 6.6.1,Page No.225

In [1]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

L=10000 #mm #Length of solid shaft
d=100 #mm #Diameter of shaft
n=150     #rpm
P=112.5*10**6 #N-mm/sec #Power Transmitted
G=82*10**3 #N/mm**2 #modulus of Rigidity

#Calculations

J=pi*d**4*(32)**-1  #mm**3 #Polar Modulus
T=P*60*(2*pi*n)**-1 #N-mm #Torsional moment

r=50 #mm #Radius

q_s=T*r*J**-1 #N/mm**2 #Max shear stress intensity
Theta=T*L*(G*J)**-1 #angle of twist

#Result
print"Max shear stress intensity",round(q_s,2),"N/mm**2"
print"Angle of Twist",round(Theta,3),"radian"
Max shear stress intensity 36.48 N/mm**2
Angle of Twist 0.089 radian

Example 6.6.2,Page No.226

In [2]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

P=440*10**6 #N-m/sec #Power transmitted
n=280 #rpm
theta=pi*180**-1 #radian #angle of twist
L=1000 #mm #Length of solid shaft
q_s=40 #N/mm**2 #Max torsional shear stress
G=84*10**3 #N/mm**2 #Modulus of rigidity

#Calculations

#P=2*pi*n*T*(60)**-1  #Equation of Power transmitted
T=P*60*(2*pi*n)**-1 #N-mm #torsional moment

#From Consideration of shear stress
d1=(T*16*(pi*40)**-1)**0.333333  

#From Consideration of angle of twist
d2=(T*L*32*180*(pi*84*10**3*pi)**-1)**0.25

#result
print"Diameter of solid shaft is",round(d1,2),"mm"
Diameter of solid shaft is 124.09 mm

Example 6.6.3,Page No.227

In [3]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

G=80*10**3 #N/mm**2 #Modulus of rigidity
q_s=80 #N/mm**2 #Max sheare stress
P=736*10**6 #N-mm/sec #Power transmitted
n=200

#Calculations

T=P*60*(2*pi*n)**-1 #N-mm #Torsional moment

#Now From consideration of angle of twist
theta=pi*180**-1
#L=15*d

d=(T*32*180*15*(pi**2*G)**-1)**0.33333

#Now corresponding stress at the surface is
q_s2=T*32*d*(pi*2*d**4)**-1

#Result
print"Max diameter required is",round(d,2),"mm"
print"Corresponding shear stress is",round(q_s2,2),"N/mm**2"
Max diameter required is 156.66 mm
Corresponding shear stress is 46.55 N/mm**2

Example 6.6.4,Page No.228

In [4]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

d=25 #mm #Diameter of steel bar
p=50*10**3 #N #Pull
dell_1=0.095 #mm #Extension of bar
l=200 #mm #Guage Length
T=200*10**3 #N-mm #Torsional moment
theta=0.9*pi*180**-1 #angle of twist
L=250 #mm Length of steel bar

#Calculations

A=pi*4**-1*d**2 #Area of steel bar #mm**2
E=p*l*(dell_1*A)**-1 #N/mm**2 #Modulus of elasticity 

J=pi*32**-1*d**4 #mm**4 #Polar modulus

G=T*L*(theta*J)**-1 #Modulus of rigidity #N/mm**2

#Now from the relation of Elastic constants
mu=E*(2*G)**-1-1

#result
print"The Poissoin's ratio is",round(mu,3)
The Poissoin's ratio is 0.292

Example 6.6.5,Page No.229

In [5]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

L=6000 #mm #Length of circular shaft
d1=100 #mm #Outer Diameter
d2=75 #mm #Inner Diameter
R=100*2**-1 #Radius of shaft
T=10*10**6 #N-mm #Torsional moment
G=80*10**3 #N/mm**2 #Modulus of Rigidity

#Calculations

J=pi*32**-1*(d1**4-d2**4) #mm**4 #Polar Modulus 

#Max Shear stress produced
q_s=T*R*J**-1 #N/mm**2

#Angle of twist
theta=T*L*(G*J)**-1 #Radian

#Result
print"MAx shear stress produced is",round(q_s,2),"N/mm**2"
print"Angle of Twist is",round(theta,2),"Radian"
MAx shear stress produced is 74.5 N/mm**2
Angle of Twist is 0.11 Radian

Example 6.6.6,Page No.229

In [6]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

d1=200 #mm #External Diameter of shaft
t=25 #mm #Thickness of shaft
n=200 #rpm
theta=0.5*pi*180**-1 #Radian #angle of twist
L=2000 #mm #Length of shaft
G=84*10**3 #N/mm**2
d2=d1-2*t #mm #Internal Diameter of shaft

#Calculations

J=pi*32**-1*(d1**4-d2**4) #mm**4 #Polar Modulus 

#Torsional moment
T=G*J*theta*L**-1 #N/mm**2 

#Power Transmitted
P=2*pi*n*T*60**-1*10**-6 #N-mm

#Max shear stress transmitted
q_s=G*theta*(d1*2**-1)*L**-1 #N/mm**2 

#Result
print"Power Transmitted is",round(P,2),"N-mm"
print"Max Shear stress produced is",round(q_s,2),"N/mm**2"
Power Transmitted is 824.28 N-mm
Max Shear stress produced is 36.65 N/mm**2

Example 6.6.7,Page No.230

In [7]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

P=3750*10**6 #N-mm/sec
n=240 #Rpm
q_s=160 #N/mm**2 #Max shear stress

#Calculations

#d2=0.8*d2 #mm #Internal Diameter of shaft

#J=pi*32**-1*(d1**4-d2**4) #mm**4 #Polar modulus
#After substituting value in above Equation we get
#J=0.05796*d1**4

T=P*60*(2*pi*n)**-1 #N-mm #Torsional moment

#Now from Torsion Formula
#T*J**-1=q_s*R**-1    ......................................(1)

#But R=d1*2**-1 

#Now substituting value of R and J in Equation (1) we get
d1=(T*(0.05796*q_s*2)**-1)**0.33333

d2=d1*0.8

#Result
print"The size of the Shaft is:d1",round(d1,3),"mm"
print"                        :d2",round(d2,3),"mm"
The size of the Shaft is:d1 200.362 mm
                        :d2 160.289 mm

Example 6.6.8,Page No.231

In [8]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

P=245*10**6 #N-mm/sec #Power transmitted
n=240 #rpm
q_s=40 #N/mm**2 #Shear stress
theta=pi*180**-1 #radian #Angle of twist
L=1000 #mm #Length of shaft
G=80*10**3 #N/mm**2

#Tmax=1.5*T

#Calculations

T=P*60*(2*pi*n)**-1 #N-mm #Torsional Moment
Tmax=1.5*T

#Now For Solid shaft
#J=pi*32*d**4

#Now from the consideration of shear stress we get
#T*J**-1=q_s*(d*2**-1)**-1
#After substituting value in above Equation we get
#T=pi*16**-1*d**3*q_s

#Designing For max Torque
d=(Tmax*16*(pi*40)**-1)**0.33333 #mm #Diameter of shaft

#For max Angle of Twist
#Tmax*J**-1=G*theta*L**-1 
#After substituting value in above Equation we get
d2=(Tmax*32*180*L*(pi**2*G)**-1)**0.25

#For Hollow Shaft

#d1_2=Outer Diameter
#d2_2=Inner Diameter

#d2_2=0.5*d1_2

# Polar modulus
#J=pi*32**-1*(d1_2**4-d2_2**4)
#After substituting values we get
#J=0.092038*d1_2**4

#Now from the consideration of stress
#Tmax*J**-1=q_s*(d1_2*2**-1)**-1
#After substituting values and further simplifying we get
d1_2=(Tmax*(0.092038*2*q_s)**-1)**0.33333

#Now from the consideration of angle of twist
#Tmax*J**-1=G*theta*L**-1
#After substituting values and further simplifying we get
d1_3=(Tmax*180*L*(0.092038*G*pi)**-1)**0.25

d2_2=0.5*d1_2

#result
print"Diameter of shaft is:For solid shaft:d",round(d,2),"mm"
print"                    :For Hollow shaft:d1_2",round(d1_2,3),"mm"
print"                    :                :d2_2",round(d2_2,3),"mm"             
Diameter of shaft is:For solid shaft:d 123.01 mm
                    :For Hollow shaft:d1_2 125.69 mm
                    :                :d2_2 62.845 mm

Example 6.6.11,Page No.235

In [9]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

P=250*10**6 #N-mm/sec #Power transmitted
n=100 #rpm
q_s=75 #N/mm**2 #Shear stress

#Calculations

#From Equation of Power we have
T=P*60*(2*pi*n)**-1 #N-mm #Torsional moment

#Now from torsional moment equation we have
#T=j*q_s*(d/2**-1)**-1
#After substituting values in above equation and further simplifying we get
#T=pi*16**-1**d**3*q_s
d=(T*16*(pi*q_s)**-1)**0.3333 #mm #Diameter of solid shaft

#PArt-2

#Let d1 and d2 be the outer and inner diameter of hollow shaft
#d2=0.6*d1

#Again from torsional moment equation we have
#T=pi*32**-1*(d1**4-d2**4)*q_s*(d1/2)**-1
d1=(T*16*(pi*(1-0.6**4)*q_s)**-1)**0.33333
d2=0.6*d1

#Cross sectional area of solid shaft
A1=pi*4**-1*d**2 #mm**2

#cross sectional area of hollow shaft
A2=pi*4**-1*(d1**2-d2**2)

#Now percentage saving in weight
#Let W be the percentage saving in weight
W=(A1-A2)*100*A1**-1

#Result
print"Percentage saving in Weight is",round(W,3),"%"
print"Size of shaft is:solid shaft:d",round(d,3),"mm"
print"               :Hollow shaft:d1",round(d1,3),"mm"
print"               :            :d2",round(d2,3),"mm"
Percentage saving in Weight is 29.735 %
Size of shaft is:solid shaft:d 117.418 mm
               :Hollow shaft:d1 123.031 mm
               :            :d2 73.818 mm

Example 6.6.12,Page No.237

In [10]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables
d=100 #mm #Diameter of solid shaft
d1=100 #mm #Outer Diameter of hollow shaft
d2=50  #mm #Inner Diameter of hollow shaft

#Calculations

#Torsional moment of solid shaft
#T_s=J*q_s*(d*2**-1)**-1 
#After substituting values in above equation and further simplifying we get
#T_s=pi*16*d**3*q_s ...............(1)

#torsional moment for hollow shaft is
#T_h=J*q_s*(d1**4-d2**4)**-1*(d1*2**-1)
#After substituting values in above equation and further simplifying we get
#T_h=pi*32**-1*2*d1**-1*(d1**4-d2**4)*q_s  ...........(2)

#Dividing Equation 2 by 1 we get
#Let the ratio of T_h*T_s**-1 Be X
X=1-0.5**4

#Loss in strength 
#Let s be the loss in strength
#s=T_s*T_h*100*T_s**-1
#After substituting values in above equation and further simplifying we get
s=(1-0.9375)*100

#Weight Ratio 
#Let w be the Weight ratio
#w=W_h*W_s**-1

A_h=pi*32**-1*(d1**2-d2**2) #mm**2 #Area of Hollow shaft
A_s=pi*32**-1*d**2 #mm**2 #Area of solid shaft

w=A_h*A_s**-1 

#Result
print"Loss in strength is",round(s,2)
print"Weight ratio is",round(w,2)
Loss in strength is 6.25
Weight ratio is 0.75

Example 6.6.13,Page No.239

In [11]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables
T=8 #KN-m #Torque 
d=100 #mm #Diameter of portion AB
d1=100 #mm #External Diameter of Portion BC
d2=75 #mm #Internal Diameter of Portion BC
G=80 #KN/mm**2 #Modulus of Rigidity
L1=1500 #mm #Radial Distance of Portion AB
L2=2500 #mm #Radial Distance ofPortion BC

#Calculations

R=d*2**-1 #mm #Radius of shaft

#For Portion AB,Polar Modulus
J1=pi*32**-1*d**4 #mm**4 

#For Portion BC,Polar modulus 
J2=pi*32**-1*(d1**4-d2**4) #mm**4

#Now Max stress occurs in portion BC since max radial Distance is sme in both cases
q_max=T*J2**-1*R*10**6 #N/mm**2 

#Let theta1 be the rotation in Portion AB and theta2 be the rotation in portion BC
theta1=T*L1*(G*J1)**-1 #Radians
theta2=T*L2*(G*J2)**-1 #Radians

#Total Rotational at end C
theta=(theta1+theta2)*10**3 #Radians

#Result
print"Max stress induced is",round(q_max,2),"N/mm**2"
print"Angle of Twist is",round(theta,3),"radians"
Max stress induced is 59.6 N/mm**2
Angle of Twist is 0.053 radians

Example 6.6.14,Page No.240

In [12]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

q_b=80 #N/mm**2 #Shear stress in Brass
q_s=100 #N/mm**2 #Shear stress in Steel
G_b=40*10**3 #N/mm**2 
G_s=80*10**3 
L_b=1000 #mm #Length of brass shaft
L_s=1200 #mm #Length of steel shaft
d1=80 #mm #Diameter of brass shaft
d2=60 #mm #Diameter of steel shaft

#Calculations

#Polar modulus of brass rod
J_b=pi*32**-1*d1**4 #mm**4 

#Polar modulus of steel rod
J_s=pi*32**-1*d2**4 #mm**4

#Considering bras Rod:AB
T1=J_b*q_b*(d1*2**-1)**-1 #N-mm 

#Considering Steel Rod:BC
T2=J_s*q_s*(d2*2**-1)**-1 #N-mm

#Max Torque that can be applied
T2

#Let theta_b and theta_s be the rotations in Brass and steel respectively
theta_b=T2*L_b*(G_b*J_b)**-1 #Radians
theta_s=T2*L_s*(G_s*J_s)**-1 #Radians

theta=theta_b+theta_s #Radians #Rotation of free end

#Result
print"Total of free end is",round(theta,3),"Radians"
Total of free end is 0.076 Radians

Example 6.6.15,Page No.241

In [13]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

G=80*10**3 #N/mm**2 #Modulus of Rigidity
d1=100 #mm #Outer diameter of hollow shft
d2=80  #mm #Inner diameter of hollow shaft
d=80   #mm #diameter of Solid shaft
d3=60  #mm #diameter of Solid shaft having L=0.5m
L1=300 #mm #Length of Hollow shaft
L2=400 #mm #Length of solid shaft
L3=500 #mm #LEngth of solid shaft of diameter 60mm
T1=2*10**6 #N-mm #Torsion in Shaft AB
T2=1*10**6 #N-mm #Torsion in shaft BC
T3=1*10**6 #N-mm #Torsion in shaft CD

#Calculations

#Now Polar modulus of section AB
J1=pi*32**-1*(d1**4-d2**4) #mm**4 

#Polar modulus of section BC
J2=pi*32**-1*d**4 #mm**4

#Polar modulus of section CD
J3=pi*32**-1*d3**4 #mm**4

#Now angle of twist of AB
theta1=T1*L1*(G*J1)**-1 #radians

#Angle of twist of BC
theta2=T2*L2*(G*J2)**-1 #radians

#Angle of twist of CD
theta3=T3*L3*(G*J3)**-1 #radians

#Angle of twist
theta=theta1-theta2+theta3 #Radians

#Shear stress in AB From Torsion Equation
q_s1=T1*(d1*2**-1)*J1**-1 #N/mm**2 

#Shear stress in BC
q_s2=T2*(d*2**-1)*J2**-1 #N/mm**2 

#Shear stress in CD
q_s3=T3*(d3*2**-1)*J3**-1 #N-mm**2

#As max shear stress occurs in portion CD,so consider CD

#Result
print"Angle of twist at free end is",round(theta,5),"Radian"
print"Max Shear stress",round(q_s3,2),"N/mm**2"
Angle of twist at free end is 0.00496 Radian
Max Shear stress 23.58 N/mm**2

Example 6.6.16,Page No.242

In [14]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

L=1000 #mm #Length of bar
L1=600 #mm #Length of Bar AB
L2=400 #mm #Length of Bar BC
d1=60  #mm #Outer Diameter of bar BC
d2=30  #mm #Inner Diameter of bar BC
d=60   #mm #Diameter of bar AB
T=2*10**6 #N-mm #Total Torque

#Calculations

#Polar Modulus of Portion AB
J1=pi*32**-1*d**4 #mm*4

#Polar Modulus of Portion BC
J2=pi*32**-1*(d1**4-d2**4) #mm**4

#Let T1 be the torque resisted by bar AB and T2 be torque resisted by Bar BC
#Let theta1 and theta2 be the rotation of shaft in portion AB & BC

#theta1=T1*L1*(G*J1)**-1 #radians
#After substituting values and further simplifying we get 
#theta1=32*600*T1*(pi*60**4*G)**-1

#theta2=T2*L*(J2*G)**-1 #Radians
#After substituting values and further simplifying we get 
#theta2=32*400*T2*(pi*60**4*(1-0.5**4)*G)**-1 

#Now For consistency of Deformation,theta1=theta2
#After substituting values and further simplifying we get 
#T1=0.7111*T2  ..................................................(1)

#But T1+T2=T=2*10**6   ...........................................(2)
#Substituting value of T1 in above equation

T2=T*(0.7111+1)**-1
T1=0.71111*T2

#Max stress in Portion AB
q_s1=T1*(d*2**-1)*(J1)**-1 #N/mm**2

#Max stress in Portion BC
q_s2=T2*(d1*2**-1)*J2**-1 #N/mm**2 

#Result
print"Stresses Developed in Portion:AB",round(q_s1,2),"N/mm**2"
print"                             :BC",round(q_s2,2),"N/mm**2"
Stresses Developed in Portion:AB 19.6 N/mm**2
                             :BC 29.4 N/mm**2

Example 6.6.17,Page No.243

In [15]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

d1=80 #mm #External Diameter of Brass tube
d2=50 #mm #Internal Diameter of Brass tube
d=50  #mm #Diameter of steel Tube
G_b=40*10**3 #N/mm**2 #Modulus of Rigidity of brass tube
G_s=80*10**3 #N/mm**2 #Modulus of rigidity of steel tube
T=6*10**6 #N-mm #Torque
L=2000 #mm #Length of Tube

#Calculations

#Polar Modulus of brass tube
J1=pi*32**-1*(d1**4-d2**4) #mm**4 

#Polar modulus of steel Tube
J2=pi*32**-1*d**4 #mm**4

#Let T_s & T_b be the torque resisted by steel and brass respectively
#Then, T_b+T_s=T   ............................................(1)

#Since the angle of twist will be the same
#Theta1=Theta2
#After substituting values and further simplifying we get 
#Ts=0.360*Tb     ...........................................(2)

#After substituting value of Ts in eqn 1 and further simplifying we get 
T_b=T*(0.36+1)**-1 #N-mm
T_s=0.360*T_b

#Let q_s and q_b be the max stress in steel and brass respectively
q_b=T_b*(d1*2**-1)*J1**-1 #N/mm**2
q_s=T_s*(d2*2**-1)*J2**-1 #N/mm**2

#Since angle of twist in brass=angle of twist in steel
theta_s=T_s*L*(J2*G_s)**-1

#Result
print"Stresses Developed in Materials are:Brass",round(q_b,2),"N/mm**2"
print"                                   :Steel",round(q_s,2),"N/mm**2"
print"Angle of Twist in 2m Length",round(theta_s,3),"Radians" 
Stresses Developed in Materials are:Brass 51.79 N/mm**2
                                   :Steel 64.71 N/mm**2
Angle of Twist in 2m Length 0.065 Radians

Example 6.6.18,Page No.245

In [16]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

d1=60 #mm #External Diameter of aluminium Tube
d2=40 #mm #Internal Diameter of aluminium Tube
d=40  #mm #Diameter of steel tube
q_a=60 #N/mm**2 #Permissible stress in aluminium
q_s=100 #N/mm**2 #Permissible stress in steel tube
G_a=27*10**3 #N/mm**2 
G_s=80*10**3 #N/mm**2 

#Calculations

#Polar modulus of aluminium Tube
J_a=pi*32**-1*(d1**4-d2**4) #mm**4

#Polar Modulus of steel Tube
J_s=pi*32**-1*d**4 #mm**4

#Now the angle of twist of steel tube = angle of twist of aluminium tube
#T_s*L_s*(J_s*theta_s)**-1=T_a*L_a*(J_a*theta_a)**-1
#After substituting values in above Equation and Further simplifyin we get
#T_s=0.7293*T_a   .....................(1)

#If steel Governs the resisting capacity
T_s1=q_s*J_s*(d*2**-1)**-1 #N-mm
T_a1=T_s1*0.7293**-1  #N-mm
T1=(T_s1+T_a1)*10**-6 #KN-m #Total Torque in steel Tube

#If aluminium Governs the resisting capacity 
T_a2=q_a*J_a*(d1*2**-1) #N-mm
T_s2=T_a2*0.7293 #N-mm
T2=(T_s2+T_a2)*10**-6 #KN-m #Total Torque in aluminium tube

#Result
print"Steel Governs the torque carrying capacity",round(T1,2),"KN-m"
Steel Governs the torque carrying capacity 2.98 KN-m

Example 6.6.20,Page No.250

In [18]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

T=2*10**6 #N-mm #Torque transmitted
G=80*10**3 #N/mm**2 #Modulus of rigidity
d1=40 #mm 
d2=80 #mm
r1=20 #mm
r2=40 #mm
L=2000 #mm #Length of shaft

#Calculations

#Angle of twist 
theta=2*T*L*(r1**2+r1*r2+r2**2)*(3*pi*G*r2**3*r1**3)**-1 #radians

#If the shaft is treated as shaft of average Diameter
d_avg=(d1+d2)*2**-1 #mm

theta1=T*L*(G*pi*32**-1*d_avg**4)**-1 #Radians

#Percentage Error
#Let Percentage Error be E
X=theta-theta1
E=(X*theta**-1)*100 

#Result
print"Percentage Error is",round(E,2),"%"
Percentage Error is 32.28 %

Example 6.6.21,Page No.252

In [19]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

G=80*10**3 #N/mm**2 
P=1*10**9 #N-mm/sec #Power
n=300 
d1=150 #mm #Outer Diameter
d2=120 #mm #Inner Diameter
L=2000 #mm #Length of circular shaft

#Calculations

T=P*60*(2*pi*n)**-1 #N-mm

#Polar Modulus 
J=pi*32**-1*(d1**4-d2**4) #mm**4

q_s=T*J**-1*(d1*2**-1) #N/mm**2 


#Strain ENergy
U=q_s**2*(4*G)**-1*pi*4**-1*(d1**2-d2**2)*L

#Result
print"Max shear stress is",round(q_s,2),"N/mm**2"
print"Strain Energy stored in the shaft is",round(U,2),"N-mm"
Max shear stress is 81.36 N/mm**2
Strain Energy stored in the shaft is 263181.37 N-mm

Example 6.6.22,Page No.254

In [20]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

d=12 #mm #Diameter of helical spring
D=150 #mm #Mean Diameter
R=D*2**-1 #mm #Radius of helical spring
n=10 #no.of turns
G=80*10**3 #N/mm**2 
W=450 #N #Load

#Calculations

#Max shear stress 
q_s=16*W*R*(pi*d**3)**-1 #N/mm**2

#Strain Energy stored
U=32*W**2*R**3*n*(G*d**4)**-1 #N-mm

#Deflection Produced
dell=64*W*R**3*n*(G*d**4)**-1 #mm

#Stiffness Spring
k=W*dell**-1 #N/mm

#Result
print"Max shear stress is",round(q_s,2),"N/mm**2"
print"Strain Energy stored is",round(U,2),"N-mm"
print"Deflection Produced is",round(dell,2),"mm"
print"Stiffness spring is",round(k,2),"N/mm"
Max shear stress is 99.47 N/mm**2
Strain Energy stored is 16479.49 N-mm
Deflection Produced is 73.24 mm
Stiffness spring is 6.14 N/mm

Example 6.6.23,Page No.255

In [21]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

K=5 #N/mm #Stiffness
L=100 #mm #Solid Length
q_s=60 #N/mm**2 #Max shear stress
W=200 #N #Max Load
G=80*10**3 #N/mm**2

#Calculations

#K=W*dell**-1
#After substituting values and further simplifying we get
#d=0.004*R**3*n   ........(1) #mm #Diameter of wire
#n=L*d**-1         ........(2)

#From Shearing stress
#q_s=16*W*R*(pi*d**3)**-1 
#After substituting values and further simplifying we get
#d**4=0.004*R**3*n    .................(4)

#From Equation 1,2,3
#d**4=0.004*(0.0785*d**3)**3*100*d**-1
#after further simplifying we get
d=5168.101**0.25
n=100*d**-1
R=(d**4*(0.004*n)**-1)**0.3333

#Result
print"Diameter of Wire is",round(d,2),"mm"
print"No.of turns is",round(n,2)
print"Mean Radius of spring is",round(R,2),"mm"
Diameter of Wire is 8.48 mm
No.of turns is 11.79
Mean Radius of spring is 47.83 mm

Example 6.6.24,Page No.255

In [22]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

m=5*10**5 #Wagon Weighing
v=18*1000*36000**-1 
d=300 #mm #Diameter of Beffer springs
n=18 #no.of turns
G=80*10**3 #N/mm**2
dell=225
R=100 #mm #Mean Radius

#Calculations

#Energy of Wagon
E=m*v**2*(9.81*2)**-1 #N-mm

#Load applied
W=dell*G*d**4*(64*R**3*n)**-1 #N 

#Energy each spring can absorb is
E2=W*dell*2**-1 #N-mm

#No.of springs required to absorb energy of Wagon
n2=E*E2**-1 *10**7

#Result
print"No.of springs Required for Buffer is",round(n2,2)
No.of springs Required for Buffer is 4.47

Example 6.6.25,Page No.259

In [23]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

b=180 #mm #width of flange
d=10 #mm #Depth of flange
t=10 #mm #Thickness of flange
D=400 #mm #Overall Depth 

#Calculations

I_xx=1*12**-1*(b*D**3-(b-t)*(D-2*d)**3)
I_yy=1*12**-1*((D-2*d)*t**3+2*t*b**3)

#If warping is neglected
J=I_xx+I_yy #mm**4

#Since b/d>1.6,we get
J2=1*3**-1*d**3*b*(1-0.63*d*b**-1)*2+1*3**-1*t**3*(D-2*d)*(1-0.63*t*b**-1)

#Over Estimation of torsional Rigidity would have been 
T=J*J2**-1

#Result
print"Error in assessing torsional Rigidity if the warping is neglected is",round(T,2)
Error in assessing torsional Rigidity if the warping is neglected is 808.28

Example 6.6.26,Page No.261

In [24]:
import math
from math import sin, cos, tan, pi, radians

#Initilization of Variables

d1=100 #mm #Outer Diameter
d2=95 #mm #Inner Diameter
T=2*10**6 #N-mm #Torque

#Calculations

J=pi*32**-1*(d1**4-d2**4) #mm**4 #Polar Modulus

#Shear stress
q_max=T*J**-1*d1*2**-1 #N/mm**2 

#Now theta*L**-1=T*(G*J)**-1
#After substituting values and further simplifying we get
#Let theta*L**-1=X
X=T*J**-1

#Now Treating it as very thin walled tube
d=(d1+d2)*2**-1 #mm

r=d*2**-1 
t=(d1-d2)*2**-1
q_max2=T*(2*pi*r**2*t)**-1 #N/mm**2

X2=T*(2*pi*r**3*t)**-1 

#Result
print"When it is treated as hollow shaft:Max shear stress",round(q_max,2),"N/mm**2"
print"                                  :Angle of Twist per unit Length",round(X,3)
print"When it is very thin Walled Tube  :Max shear stress",round(q_max2,2),"N/mm**2"
print"                                  :Angle of twist per Unit Length",round(X2,3)
When it is treated as hollow shaft:Max shear stress 54.91 N/mm**2
                                  :Angle of Twist per unit Length 1.098
When it is very thin Walled Tube  :Max shear stress 53.57 N/mm**2
                                  :Angle of twist per Unit Length 1.099