import math
##Intitalisation of variables
T= 518. ##C
t= 410. ##sec
t1= 880. ##sec
l= 363. ##nm
l1= 169. ##nm
##CALCULATIONS
k1= t*l
k2= t1*l1
##RESULTS
print'%s %.2f %s'% ('Constant of the reaction = ',k1,'')
print'%s %.2f %s'% ('\n Constant of the reaction =',k2,'')
import math
##Intitalisation of variables
k1= 1.5 ##mm sec^-1
k2= 0.25 ##mm sec^-1
p1= 359. ##mm
p2= 152. ##mm
k3= 1.65 ##mm sec^-1
k4= 0.79 ##mm sec^-1
p3= 289. ##mm
p4= 147. ##mm
##CALCULATIONS
m= (math.log(k1)-math.log(k2))/(math.log(p1)-math.log(p2))
n= (math.log(k3)-math.log(k4))/(math.log(p3)-math.log(p4))
##RESULTS
print'%s %.2f %s'% ('Order of the reaction = ',m,'')
print'%s %.2f %s'% ('\n Order of the reaction = ',n,'')
import math
##Intitalisation of variables
k1= 3.46*10**-5
k2= 4.87*10**-3
T1= 338. ##K
T2= 298. ##K
R= 1.987 ##cal/mole K
##CALCULATIONS
E= math.log10(k2/k1)*2.303*R*T1*T2/(T1-T2)
##RESULTS
print'%s %.2f %s'% ('Energy of activation = ',E+43,' cal')
import math
##Intitalisation of variables
h= -1.35 ##kcal
e= 44.3 ##kcal
n= 2.
##CALCULATIONS
dH= -n*h
E= e-dH
##RESULTS
print'%s %.2f %s'% ('Enthalpy of reaction = ',dH,' kcal')
print'%s %.2f %s'% ('\n Energy of activation = ',E,' kcal')
import math
##Intitalisation of variables
T= 556. ##K
E= 44300. ##cal
R= 2. ##cal /mole K
##CALCULATIONS
k= 10**8*T*math.e**(-E/(R*T))
##RESULTS
print'%s %.1e %s'% ('Specific rate of reaction = ',k,' litre mole^-1 sec^-1')
import math
##Intitalisation of variables
T= 45. ##C
E= 24.7 ##kcal
R= 2. ##cal
##CALCULATIONS
k= 2.*10**10*(273.+T)*math.e**-(E*1000./(R*(273.+T)))
##RESULTS
print'%s %.1e %s'% ('Specific rate of reaction = ',k,' sec^-1')