##CHAPTER 10 ILLUSRTATION 1 PAGE NO 268
##TITLE:Brakes and Dynamometers
import math
#calculate torque transmitted by the block brake
##===========================================================================================
##INPUT DATA
d=0.32;##Diameter of the drum in m
qq=90.;##Angle of contact in degree
P=820.;##Force applied in N
U=0.35;##Coefficient of friction
U1=((4.*U*math.sin(45/57.3))/((qq*(3.14/180.))+math.sin(90./57.3)));##Equivalent coefficient of friction
F=((P*0.66)/((0.3/U1)-0.06));##Force value in N taking moments
TB=(F*(d/2.));##Torque transmitted in N.m
print'%s %.4f %s'%('Torque transmitted by the block brake is ',TB,' N.m')
##CHAPTER 10 ILLUSRTATION 2 PAGE NO 269
##TITLE:Brakes and Dynamometers
import math
#calculate The bicycle travels a distance and makes turns before it comes to rest
##===========================================================================================
##INPUT DATA
m=120.;##Mass of rider in kg
v=16.2;##Speed of rider in km/hr
d=0.9;##Diameter of the wheel in m
P=120.;##Pressure applied on the brake in N
U=0.06;##Coefficient of friction
F=(U*P);##Frictional force in N
KE=((m*(v*(5./18.))**2.)/2.);##Kinematic Energy in N.m
S=(KE/F);##Distance travelled by the bicycle before it comes to rest in m
N=(S/(d*3.14));##Required number of revolutions
print'%s %.1f %s %.1f %s'%('The bicycle travels a distance of ',S,' m'and'',N,'turns before it comes to rest')
##CHAPTER 10 ILLUSRTATION 3 PAGE NO 270
##TITLE:Brakes and Dynamometers
import math
#evaluvate maximum torque absorbed
##===========================================================================================
##INPUT DATA
S=3500.;##Force on each arm in N
d=0.36;##Diamter of the wheel in m
U=0.4;##Coefficient of friction
qq=100.;##Contact angle in degree
qqr=(qq*(3.14/180));##Contact angle in radians
UU=((4*U*math.sin(50/57.3))/(qqr+(math.sin(100./57.3))));##Equivalent coefficient of friction
F1=(S*0.45)/((0.2/UU)+((d/2.)-0.04));##Force on fulcrum in N
F2=(S*0.45)/((0.2/UU)-((d/2.)-0.04));##Force on fulcrum in N
TB=(F1+F2)*(d/2.);##Maximum torque absorbed in N.m
print'%s %.2f %s'%('Maximum torque absorbed is ',TB,' N.m')
##CHAPTER 10 ILLUSRTATION 4 PAGE NO 271
##TITLE:Brakes and Dynamometers
import math
#calculate The maximum braking torque on the drum
##===========================================================================================
##INPUT DATA
a=0.5;##Length of lever in m
d=0.5;##Diameter of brake drum in m
q=(5/8.)*(2*3.14);##Angle made in radians
b=0.1;##Distance between pin and fulcrum in m
P=2000.;##Effort applied in N
U=0.25;##Coefficient of friction
T=math.exp(U*q);##Ratios of tension
T2=((P*a)/b);##Tension in N
T1=(T*T2);##Tension in N
TB=((T1-T2)*(d/2.))/1000.;##Maximum braking torque in kNm
print'%s %.2f %s'%('The maximum braking torque on the drum is',TB,' kNm')
##CHAPTER 10 ILLUSRTATION 5 PAGE NO 271
##TITLE:Brakes and Dynamometers
import math
#caculate the brake is self -locking and tension in the side
##===========================================================================================
##INPUT DATA
q=220.;##Angle of contact in degree
T=340.;##Torque in Nm
d=0.32;##Diameter of drum in m
U=0.3;##Coefficient of friction
Td=(T/(d/2.));##Difference in tensions in N
Tr=math.exp(U*(q*(3.14/180.)));##Ratio of tensions
T2=(Td/(Tr-1.));##Tension in N
T1=(Tr*T2);##Tension in N
P=((T2*(d/2.))-(T1*0.04))/0.5;##Force applied in N
b=(T1/T2)*4.;##Value of b in cm when the brake is self-locking
print'%s %.2f %s %.2f %s %.2f %s '%('The value of b is ',b,' cm' 'when the brake is self-locking ' 'Tensions in the sides are ',T1,' N and',T2,' N')
##CHAPTER 10 ILLUSRTATION 6 PAGE NO 272
##TITLE:Brakes and Dynamometers
import math
#calculate torque required and thickness necessary to limit the tensile stress to 70 and secton of the lever taking stress to 60 mpa
##===========================================================================================
##INPUT DATA
d=0.5;##Drum diamter in m
U=0.3;##Coefficient of friction
q=250;##Angle of contact in degree
P=750;##Force in N
a=0.1;##Band width in m
b=0.8;##Distance in m
ft=(70*10**6);##Tensile stress in Pa
f=(60*10**6);##Stress in Pa
b1=0.1;##Distance in m
T=math.exp(U*(q*(3.14/180.)));##Tensions ratio
T2=(P*b*10.)/(T+1.);##Tension in N
T1=(T*T2);##Tension in N
TB=(T1-T2)*(d/2.);##Torque in N.m
t=(max(T1,T2)/(ft*a))*1000.;##Thickness in mm
M=(P*b);##bending moment at fulcrum in Nm
X=(M/((1/6.)*f));##Value of th**2
##t varies from 10mm to 15 mm. Taking t=15mm,
h=math.sqrt(X/(0.015))*1000.;##Section of the lever in m
print'%s %.1f %s %.1f %s %.1f %s'%('Torque required is ',TB,' N.m' 'Thickness necessary to limit the tensile stress to 70 MPa is ',t,' mm ''Section of the lever taking stress to 60 MPa is ',h,' mm')
##CHAPTER 10 ILLUSRTATION 7 PAGE NO 273
##TITLE:Brakes and Dynamometers
#calculate value of x and value of power/bd ratio
import math
##===========================================================================================
##INPUT DATA
P1=30.;##Power in kW
N=1250.;##Speed in r.p.m
P=60.;##Applied force in N
d=0.8;##Drum diameter in m
q=310.;##Contact angle in degree
a=0.03;##Length of a in m
b=0.12;##Length of b in m
U=0.2;##Coefficient of friction
B=10.;##Band width in cm
D=80.;##Diameter in cm
T=(P1*60000.)/(2.*3.14*N);##Torque in N.m
Td=(T/(d/2.));##Tension difference in N
Tr=math.exp(U*(q*(3.14/180.)));##Tensions ratio
T2=(Td/(Tr-1.));##Tension in N
T1=(Tr*T2);##Tension in N
x=((T2*b)-(T1*a))/P;##Distance in m;
X=(P1/(B*D));##Ratio
print'%s %.3f %s %.3f %s'%('Value of x is ',x,' m '' Value of (Power/bD) ratio is ',X,'')
##CHAPTER 10 ILLUSRTATION 8 PAGE NO 274
##TITLE:Brakes and Dynamometers
import math
#calculate time required to bring the shaft to the rest from its running condition
##===========================================================================================
##INPUT DATA
m=80.;##Mass of flywheel in kg
k=0.5;##Radius of gyration in m
N=250;##Speed in r.p.m
d=0.32;##Diamter of the drum in m
b=0.05;##Distance of pin in m
q=260.;##Angle of contact in degree
U=0.23;##Coefficient of friction
P=20;##Force in N
a=0.35;##Distance at which force is applied in m
Tr=math.exp(U*q*(3.14/180.));##Tensions ratio
T2=(P*a)/b;##Tension in N
T1=(Tr*T2);##Tension in N
TB=(T1-T2)*(d/2.);##Torque in N.m
KE=((1/2.)*(m*k**2)*((2.*3.14*N)/60.)**2);##Kinematic energy of the rotating drum in Nm
N1=(KE/(TB*2.*3.14));##Speed in rpm
aa=((2*3.14*N)/60.)**2/(4.*3.14*N1);##Angular acceleration in rad/s**2
t=((2.*3.14*N)/60.)/aa;##Time in seconds
print'%s %.1f %s'%('Time required to bring the shaft to the rest from its running condition is ',t,' seconds')
##CHAPTER 10 ILLUSRTATION 9 PAGE NO 275
##TITLE:Brakes and Dynamometers
import math
#calculate Minimum force required and Time taken to bring to rest
##===========================================================================================
##INPUT DATA
n=12.;##Number of blocks
q=15.;##Angle subtended in degree
P=185.;##Power in kW
N=300.;##Speed in r.p.m
U=0.25;##Coefficient of friction
d=1.25;##Diamter in m
b1=0.04;##Distance in m
b2=0.14;##Distance in m
a=1.;##Diatance in m
m=2400.;##Mass of rotor in kg
k=0.5;##Radius of gyration in m
Td=(P*60000.)/(2.*3.14*N*(d/2.));##Tension difference in N
T=Td*(d/2.);##Torque in Nm
Tr=((1+(U*math.tan(7.5/57.3)))/(1.-(U*math.tan(7.5/57.3))))**n;##Tension ratio
To=(Td/(Tr-1.));##Tension in N
Tn=(Tr*To);##Tension in N
P=((To*b2)-(Tn*b1))/a;##Force in N
aa=(T/(m*k**2));##Angular acceleration in rad/s**2
t=((2*3.14*N)/60.)/aa;##Time in seconds
print'%s %.1f %s %.1f %s'%('Minimum force required is ',P,' N' 'Time taken to bring to rest is ',t,' seconds')
##CHAPTER 10 ILLUSRTATION 10 PAGE NO 275
##TITLE:Brakes and Dynamometers
import math
#calculate Maximum braking torque and Angular retardation of the drum and Time taken by the system to come to rest
##===========================================================================================
##INPUT DATA
n=12.;## Number of blocks
q=16.;##Angle subtended in degrees
d=0.9;##Effective diameter in m
m=2000.;##Mass in kg
k=0.5;##Radius of gyration in m
b1=0.7;##Distance in m
b2=0.03;##Distance in m
a=0.1;##Distance in m
P=180.;##Force in N
N=360.;##Speed in r.p.m
U=0.25;##Coefficient of friction
Tr=((1.+(U*math.tan(8/57.3)))/(1.-(U*math.tan(8/57.3))))**n;##Tensions ratio
T2=(P*b1)/(a-(b2*Tr));##Tension in N
T1=(Tr*T2);##Tension in N
TB=(T1-T2)*(d/2.);##Torque in N.m
aa=(TB/(m*k**2.));##Angular acceleration in rad/s**2
t=((2.*3.14*N)/60.)/aa;##Time in seconds
print'%s %.2f %s %.2f %s %.2f %s '%('(i) Maximum braking torque is ',TB,'Nm ''(ii) Angular retardation of the drum is ',aa,' rad/s**2''(iii) Time taken by the system to come to rest is ',t,' s')