##CHAPTER 2 ILLUSRTATION 1 PAGE NO 57
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##===========================================================================================
##INPUT DATA
Na=300.;##driving shaft running speed in rpm
Nb=400.;##driven shaft running speed in rpm
Da=60.;##diameter of driving shaft in mm
t=.8;##belt thickness in mm
s=.05;##slip in percentage(5%)
##==========================================================================================
##calculation
Db=(Da*Na)/Nb;##finding out the diameter of driven shaft without considering the thickness of belt
Db1=(((Da+t)*Na)/Nb)-t##/considering the thickness
Db2=(1.-s)*(Da+t)*(Na/Nb)-t##considering slip also
##=========================================================================================
##output
print'%s %.1f %s'%('the value of Db is',Db,' cm')
print'%s %.1f %s'%('the value of Db1 is',Db1,' cm')
print'%s %.1f %s'%('the value of Db2 is',Db2,' cm')
##CHAPTER 2,ILLUSRTATION 2 PAGE NO 57
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
##====================================================================================
##input
n1=1200##rpm of motor shaft
d1=40##diameter of motor pulley in cm
d2=70##diameter of 1st pulley on the shaft in cm
s=.03##percentage slip(3%)
d3=45##diameter of 2nd pulley
d4=65##diameter of the pulley on the counnter shaft
##=========================================================================================
##calculation
n2=n1*d1*(1-s)/d2##rpm of driven shaft
n3=n2##both the pulleys are mounted on the same shaft
n4=n3*(1-s)*d3/d4##rpm of counter shaft
##output
print'%s %.1f %s %.1f %s '%('the speed of driven shaft is',n2,' rpm''the speed of counter shaft is ',n4,' rpm')
##CHAPTER 2 ILLUSTRATION 3 PAGE NO:58
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##==============================================================================
##input
d1=30.##diameter of 1st shaft in cm
d2=50.##diameter 2nd shaft in cm
pi=3.141
c=500.##centre distance between the shafts in cm
##==============================================================================
##calculation
L1=((d1+d2)*pi/2.)+(2.*c)+((d1+d2)**2.)/(4.*c)##lenth of cross belt
L2=((d1+d2)*pi/2.)+(2.*c)+((d1-d2)**2.)/(4.*c)##lenth of open belt
r=L1-L2##remedy
##==============================================================================
##OUTPUT
print'%s %.1f %s %.1f %s %.1f %s '%('length of cross belt is ',L1,'cm '' length of open belt is ',L2,'cm''the length of the belt to be shortened is ',r,' cm')
##CHAPTER 2,ILLUSTRATION 4 PAGE 59
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##====================================================================================
##INPUT
D1=.5## DIAMETER OF 1ST SHAFT IN m
D2=.25## DIAMETER OF 2nd SHAFT IN m
C=2.## CENTRE DISTANCE IN m
N1=220.## SPEED OF 1st SHAFT
T1=1250.## TENSION ON TIGHT SIDE IN N
U=.25## COEFFICIENT OF FRICTION
PI=3.141
e=2.71
##====================================================================================
##CALCULATION
L=(D1+D2)*PI/2.+((D1+D2)**2./(4.*C))+2.*C
F=(D1+D2)/(2.*C)
ALPHA=math.asin(F/57.3)
THETA=(180.+(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians
T2=T1/(e**(U*THETA))## TENSION ON SLACK SIDE IN N
V=PI*D1*N1/60.## VELOCITY IN m/s
P=(T1-T2)*V/1000.## POWER IN kW
##====================================================================================
##OUTPUT
print'%s %.1f %s'%('LENGTH OF BELT REQUIRED =',L,' m')
print'%s %.1f %s'%('ANGLE OF CONTACT =',THETA,' radians')
print'%s %.1f %s'%('POWER CAN BE TRANSMITTED=',P,' kW')
##CHAPTER 2,ILLUSTRATION 5 PAGE 5
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##=====================================================================================================
##input
n1=100.## of driving shaft
n2=240.##speed of driven shaft
p=11000.##power to be transmitted in watts
c=250.##centre distance in cm
d2=60.##diameter in cm
b=11.5*10**-2##width of belt in metres
t=1.2*10**-2##thickness in metres
u=.25##co-efficient of friction
pi=3.141
e=2.71
##===================================================================================================
##calculation for open bely drive
d1=n2*d2/n1
f=(d1-d2)/(2.*c)##sin(alpha) for open bely drive
##angle of arc of contact for open belt drive is,theta=180-2*alpha
alpha=math.asin(f)*57.3
teta=(180.-(2*alpha))*3.147/180.##pi/180 is used to convert into radians
x=(e**(u*teta))##finding out the value of t1/t2
v=pi*d2*10.*n2/60.##finding out the value of t1-t2
y=p*1000./(v)
t1=(y*x)/(x-1.)
Fb=t1/(t*b)/1000.
##=======================================================================================================
##calculation for cross belt drive bely drive
F=(d1+d2)/(2.*c)##for cross belt drive bely drive
ALPHA=math.asin(F)*57.3
THETA=(180.+(2.*ALPHA))*pi/180.##pi/180 is used to convert into radians
X=(e**(u*THETA))##finding out the value of t1/t2
V=pi*d2*10.*n2/60.##finding out the value of t1-t2
Y=p*1000./(V)
T1=(Y*X)/(X-1.)
Fb2=T1/(t*b)/1000.
##========================================================================================================
##output
print('for a open belt drive:')
print'%s %.1f %s %.1f %s'%('the tension in belt is ',t1,'N' 'stress induced is ',Fb,' kN/m**2')
print('for a cross belt drive:')
print'%s %.1f %s %.1f %s '%('the tension in belt is ',T1,'N' 'stress induced is ',Fb2,' kN/m**2')
##CHAPTER 2,ILLUSTRATION 6 PAGE 61
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##========================================================================================
##INPUT
D1=80.##DIAMETER OF SHAFT IN cm
N1=160.##SPEED OF 1ST SHAFT IN rpm
N2=320.##SPEED OF 2ND SHAFT IN rpm
C=250.##CENTRE DISTANCE IN CM
U=.3##COEFFICIENT OF FRICTION
P=4.##POWER IN KILO WATTS
e=2.71
PI=3.141
f=110.##STRESS PER cm WIDTH OF BELT
##========================================================================================
##CALCULATION
V=PI*D1*math.pow(10,-2)*N1/60.##VELOCITY IN m/s
Y=P*1000./V##Y=T1-T2
D2=D1*(N1/N2)##DIAMETER OF DRIVEN SHAFT
F=(D1-D2)/(2.*C)
ALPHA=math.asin(F/57.3)
THETA=(180.-(2.*ALPHA))*PI/180.##ANGLE OF CONTACT IN radians
X=e**(U*THETA)##VALUE OF T1/T2
T1=X*Y/(X-1.)
b=T1/f##WIDTH OF THE BELT REQUIRED
##=======================================================================================
##OUTPUT
print'%s %.1f %s'%('THE WIDTH OF THE BELT IS ',b,' cm')
#apporximate ans is correct
##CHAPTER 2 ILLUSRTATION 7 PAGE NO 62
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
##===========================================================================================
##INPUT DATA
m=1000.## MASS OF THE CASTING IN kg
PI=3.141
THETA=2.75*2*PI## ANGLE OF CONTACT IN radians
D=.26## DIAMETER OF DRUM IN m
N=24.## SPEED OF THE DRUM IN rpm
U=.25## COEFFICIENT OF FRICTION
e=2.71
T1=9810## TENSION ON TIGHTSIDE IN N
##=============================================================================================
##CALCULATION
T2=T1/(e**(U*THETA))## tension on slack side of belt in N
W=m*9.81## WEIGHT OF CASTING IN N
R=D/2.## RADIUS OF DRUM IN m
P=2*PI*N*W*R/60000.## POWER REQUIRED IN kW
P2=(T1-T2)*PI*D*N/60000.## POWER SUPPLIED BY DRUM IN kW
##============================================================================================
##OUTPUT
print'%s %.1f %s %.1f %s %.1f %s '%('FORCE REQUIRED BY MAN=',T2,' N'and 'POWER REQUIRED TO RAISE CASTING=',P,' kW' 'POWER SUPPLIED BY DRUM=',P2,' kW')
##CHAPTER 2,ILLUSTRATION 8 PAGE 62
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##INPUT
t=9.##THICKNESS IN mm
b=250.##WIDTH IN mm
D=90.##DIAMETER OF PULLEY IN cm
N=336.##SPEED IN rpm
PI=3.141
U=.35##COEFFICIENT FRICTION
e=2.71
THETA=120.*PI/180.
Fb=2.##STRESS IN MPa
d=1000.##DENSITY IN KG/M**3
##CALCULATION
M=b*10**-3.*t*10**-3.*d##MASS IN KG
V=PI*D*10**-2.*N/60.##VELOCITY IN m/s
Tc=M*V**2##CENTRIFUGAL TENSION
Tmax=b*t*Fb##MAX TENSION IN N
T1=Tmax-Tc
T2=T1/(e**(U*THETA))
P=(T1-T2)*V/1000.
##OUTPUT
print'%s %.1f %s'%('THE TENSION ON TIGHT SIDE OF THE BELT IS',T1,' N')
print'%s %.1f %s'%('THE TENSION ON SLACK SIDE OF THE BELT IS ',T2,' N')
print'%s %.1f %s'%('CENTRIFUGAL TENSION =',Tc,'N')
print'%s %.1f %s'%('THE POWER CAPACITY OF BELT IS ',P,' KW')
##CHAPTER 2,ILLUSTRATION 9 PAGE 63
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##INPUT
P=35000.##POWER TO BE TRANSMITTED IN WATTS
D=1.5##EFFECTIVE DIAMETER OF PULLEY IN METRES
N=300.##SPEED IN rpm
e=2.71
U=.3##COEFFICIENT OF FRICTION
PI=3.141
THETA=(11/24.)*360.*PI/180.##ANGLE OF CONTACT
density=1.1##density of belt material in Mg/m**3
L=1.##in metre
t=9.5##THICKNESS OF BELT IN mm
Fb=2.5##PERMISSIBLE WORK STRESS IN N/mm**2
##CALCULATION
V=PI*D*N/60.##VELOCITY IN m/s
X=P/V##X=T1-T2
Y=e**(U*THETA)##Y=T1/T2
T1=X*Y/(Y-1)
Mb=t*density*L/10**3.##value of m/b
Tc=Mb*V**2.##centrifugal tension/b
Tmaxb=t*Fb##max tension/b
b=T1/(Tmaxb-Tc)##thickness in mm
##output
print'%s %.1f %s'%('TENSION IN TIGHT SIDE OF THE BELT =',T1,' N')
print'%s %.1f %s'%('THICKNESS OF THE BELT IS =',b,' mm')
##CHAPTER 2,ILLUSTRATION 10 PAGE 64
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##INPUT
t=5.##THICKNESS OF BELT IN m
PI=3.141
U=.3
e=2.71
THETA=155.*PI/180.##ANGLE OF CONTACT IN radians
V=30.##VELOCITY IN m/s
density=1.##in m/cm**3
L=1.##LENGTH
##calculation
Xb=80.## (T1-T2)=80b;so let (T1-T2)/b=Xb
Y=e**(U*THETA)## LET Y=T1/T2
Zb=80.*Y/(Y-1.)## LET T1/b=Zb;BY SOLVING THE ABOVE 2 EQUATIONS WE WILL GET THIS EXPRESSION
Mb=t*L*density*10**-2.## m/b in N
Tcb=Mb*V**2.## centrifugal tension/b
Tmaxb=Zb+Tcb## MAX TENSION/b
Fb=Tmaxb/t##STRESS INDUCED IN TIGHT BELT
##OUTPUT
print'%s %.1f %s'%('THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT=',Fb,' N/cm**2')
##CHAPTER 2,ILLUSTRATION 11 PAGE 65
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##INPUT
C=4.5## CENTRE DISTANCE IN metres
D1=1.35## DIAMETER OF LARGER PULLEY IN metres
D2=.9## DIAMETER OF SMALLER PULLEY IN metres
To=2100.## INITIAL TENSION IN newtons
b=12.## WIDTH OF BELT IN cm
t=12.## THICKNESS OF BELT IN mm
d=1.## DENSITY IN gm/cm**3
U=.3## COEFFICIENT OF FRICTION
L=1.## length in metres
PI=3.141
e=2.71
##CALCULATION
M=b*t*d*L*10**-2.## mass of belt per metre length in KG
V=(To/3./M)**.5## VELOCITY OF FOR MAX POWER TO BE TRANSMITTED IN m/s
Tc=M*V**2.## CENTRIFUGAL TENSION IN newtons
## LET (T1+T2)=X
X=2.*To-2.*Tc ## THE VALUE OF (T1+T2)
F=(D1-D2)/(2.*C)
ALPHA=math.asin(F/57.3)
THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians
## LET T1/T2=Y
Y=e**(U*THETA)## THE VALUE OF T1/T2
T1=X*Y/(Y+1.)## BY SOLVING X AND Y WE WILL GET THIS EQN
T2=X-T1
P=(T1-T2)*V/1000.## MAX POWER TRANSMITTED IN kilowatts
N1=V*60./(PI*D1)## SPEED OF LARGER PULLEY IN rpm
N2=V*60./(PI*D2)## SPEED OF SMALLER PULLEY IN rpm
##OUTPUT
print'%s %.1f %s'%(' MAX POWER TO BE TRANSMITTED =',P,' KW')
print'%s %.1f %s'%(' SPEED OF THE LARGER PULLEY =',N1,' rpm')
print'%s %.1f %s'%(' SPEED OF THE SMALLER PULLEY =',N2,' rpm')
##CHAPTER 2,ILLUSTRATION 12 PAGE 66
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##============================================================================================================================
##INPUT
PI=3.141
e=2.71
D1=1.20## DIAMETER OF DRIVING SHAFT IN m
D2=.50## DIAMETER OF DRIVEN SHAFT IN m
C=4.## CENTRE DISTANCE BETWEEN THE SHAFTS IN m
M=.9## MASS OF BELT PER METRE LENGTH IN kg
Tmax=2000## MAX TENSION IN N
U=.3## COEFFICIENT OF FRICTION
N1=200.## SPEED OF DRIVING SHAFT IN rpm
N2=450.## SPEED OF DRIVEN SHAFT IN rpm
##==============================================================================================================================
##CALCULATION
V=PI*D1*N1/60.## VELOCITY OF BELT IN m/s
Tc=M*V**2.## CENTRIFUGAL TENSION IN N
T1=Tmax-Tc## TENSION ON TIGHTSIDE IN N
F=(D1-D2)/(2.*C)
ALPHA=math.asin(F/57.3)
THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians
T2=T1/(e**(U*THETA))## TENSION ON SLACK SIDE IN N
TL=(T1-T2)*D1/2.## TORQUE ON THE SHAFT OF LARGER PULLEY IN N-m
TS=(T1-T2)*D2/2.## TORQUE ON THE SHAFT OF SMALLER PULLEY IN N-m
P=(T1-T2)*V/1000.## POWER TRANSMITTED IN kW
Pi=2.*PI*N1*TL/60000.## INPUT POWER
Po=2.*PI*N2*TS/60000.## OUTPUT POWER
Pl=Pi-Po## POWER LOST DUE TO FRICTION IN kW
n=Po/Pi*100.## EFFICIENCY OF DRIVE IN %
##==================================================================================================================================
##OUTPUT
print'%s %.1f %s'%('TORQUE ON LARGER SHAFT =',TL,'N-m')
print'%s %.1f %s'%('TORQUE ON SMALLER SHAFT =',TS,' N-m')
print'%s %.1f %s'%('POWER TRANSMITTED =',P,' kW')
print'%s %.1f %s'%('POWER LOST DUE TO FRICTION =',Pl,' kW')
print'%s %.1f %s'%('EFFICIENCY OF DRINE =',n,' percentage')
##CHAPTER 2,ILLUSTRATION 13 PAGE 67
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##============================================================================================================================
##INPUT
PI=3.141
e=2.71
P=90## POWER OF A COMPRESSOR IN kW
N2=250.## SPEED OF DRIVEN SHAFT IN rpm
N1=750.## SPEED OF DRIVER SHAFT IN rpm
D2=1.## DIAMETER OF DRIVEN SHAFT IN m
C=1.75## CENTRE DISTANCE IN m
V=1600./60.## VELOCITY IN m/s
a=375.## CROSECTIONAL AREA IN mm**2
density=1000.## BELT DENSITY IN kg/m**3
L=1## length to be considered
Fb=2.5## STRESSS INDUCED IN MPa
beeta=35./2.## THE GROOVE ANGLE OF PULLEY
U=.25## COEFFICIENT OF FRICTION
##=================================================================================================================================
##CALCULATION
D1=N2*D2/N1## DIAMETER OF DRIVING SHAFT IN m
m=a*density*10**-6.*L## MASS OF THE BELT IN kg
Tmax=a*Fb## MAX TENSION IN N
Tc=m*V**2.## CENTRIFUGAL TENSION IN N
T1=Tmax-Tc## TENSION ON TIGHTSIDE OF BELT IN N
F=(D2-D1)/(2.*C)
ALPHA=math.asin(F/57.3)
THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians
T2=T1/(e**(U*THETA/math.sin(beeta/57.3)))##TENSION ON SLACKSIDE IN N
P2=(T1-T2)*V/1000.## POWER TRANSMITTED PER BELT kW
N=P/P2## NO OF V-BELTS
N3=N+1.
##======================================================================================================================================
##OUTPUT
print'%s %.1f %s %.1f %s '%('NO OF BELTS REQUIRED TO TRANSMIT POWER=',N,' APPROXIMATELY=',N3,'')
##CHAPTER 2,ILLUSTRATION 14 PAGE 68
##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
import math
##============================================================================================================================
##INPUT
PI=3.141
e=2.71
P=75.## POWER IN kW
D=1.5## DIAMETER OF PULLEY IN m
U=.3## COEFFICIENT OF FRICTION
beeta=45./2.## GROOVE ANGLE
THETA=160.*PI/180.## ANGLE OF CONTACT IN radians
m=.6## MASS OF BELT IN kg/m
Tmax=800.## MAX TENSION IN N
N=200.## SPEED OF SHAFT IN rpm
##=============================================================================================================================
##calculation
V=PI*D*N/60.## VELOCITY OF ROPE IN m/s
Tc=m*V**2.## CENTRIFUGAL TENSION IN N
T1=Tmax-Tc## TENSION ON TIGHT SIDE IN N
T2=T1/(e**(U*THETA/math.sin(beeta/57.3)))##TENSION ON SLACKSIDE IN N
P2=(T1-T2)*V/1000.## POWER TRANSMITTED PER BELT kW
No=P/P2## NO OF V-BELTS
N3=No+1.## ROUNDING OFF
To=(T1+T2+Tc*2.)/2.## INITIAL TENSION
##================================================================================================================================
##OUTPUT
print'%s %.1f %s %.1f %s '%('NO OF BELTS REQUIRED TO TRANSMIT POWER=',No,'' 'APPROXIMATELY=',N3,'')
print'%s %.1f %s'%('INITIAL ROPE TENSION=',To,' N')