##CHAPTER 7 ILLUSRTATION 1 PAGE NO 196
##TITLE:GOVERNORS
import math
##===========================================================================================
##INPUT DATA
L=.4## LENGTH OF UPPER ARM IN m
THETA=30.## INCLINATION TO THE VERTICAL IN degrees
K=.02## RISED LENGTH IN m
##============================================================================================
h2=L*math.cos(THETA/57.3)## GOVERNOR HEIGHT IN m
N2=(895./h2)**.5## SPEED AT h2 IN rpm
h1=h2-K## LENGTH WHEN IT IS RAISED BY 2 cm
N1=(895./h1)**.5## SPEED AT h1 IN rpm
n=(N1-N2)/N2*100.## PERCENTAGE CHANGE IN SPEED
##==========================================================================================
print'%s %.1f %s'%('PERCENTAGE CHANGE IN SPEED=',n,' PERCENTAGE')
##CHAPTER 7 ILLUSRTATION 2 PAGE NO 197
##TITLE:GOVERNORS
##FIGURE 7.5(A),7.5(B)
import math
##===========================================================================================
##INPUT DATA
OA=.3## LENGTH OF UPPER ARM IN m
m=6.## MASS OF EACH BALL IN Kg
M=18.## MASS OF SLEEVE IN Kg
r2=.2## RADIUS OF ROTATION AT BEGINING IN m
r1=.25## RADIUS OF ROTATION AT MAX SPEED IN m
##===========================================================================================
h1=(OA**2.-r1**2.)**.5## HIEGHT OF GOVERNOR AT MAX SPEED IN m
N1=(895.*(m+M)/(h1*m))**.5## MAX SPEED IN rpm
h2=(OA**2.-r2**2.)**.5## HEIGHT OF GONERNOR AT BEGINING IN m
N2=(895.*(m+M)/(h2*m))**.5## MIN SPEED IN rpm
##===========================================================================================
print'%s %.1f %s %.1f %s %.1f %s'%('MAX SPEED = ',N1,' rpm'' MIN SPEED = ',N2,' rpm''RANGE OF SPEED = ',N1-N2,' rpm')
##CHAPTER 7 ILLUSRTATION 3 PAGE NO 197
##TITLE:GOVERNORS
##FIGURE 7.6
import math
##===========================================================================================
##INPUT DATA
OA=.25## LENGHT OF UPPER ARM IN m
CD=.03## DISTANCE BETWEEN LEEVE AND LOWER ARM IN m
m=6.## MASS OF BALL IN Kg
M=48.## MASS OF SLEEVE IN Kg
AE=.17## FROM FIGURE 7.6
AE1=.12## FROM FIGURE 7.6
r1=.2## RADIUS OF ROTATION AT MAX SPEED IN m
r2=.15## RADIUS OF ROTATION AT MIN SPEED IN m
##============================================================================================
h1=(OA**2-r1**2)**.5## HIEGHT OF GOVERNOR AT MIN SPEED IN m
TANalpha=r1/h1
TANbeeta=AE/(OA**2-AE**2)**.5
k=TANbeeta/TANalpha
N1=(895.*(m+(M*(1.+k)/2.))/(h1*m))**.5## MIN SPEED IN rpm
h2=(OA**2-r2**2)**.5## HIEGHT OF GOVERNOR AT MAX SPEED IN m
CE=(OA**2-AE1**2)**.5
TANalpha1=r2/h2
TANbeeta1=(r2-CD)/CE
k=TANbeeta1/TANalpha1
N2=(895.*(m+(M*(1.+k)/2.))/(h2*m))**.5## MIN SPEED IN rpm
##========================================================================================================
print'%s %.1f %s %.1f %s %.1f %s'%('MAX SPEED = ',N1,' rpm'' MIN SPEED = ',N2,' rpm''RANGE OF SPEED = ',N1-N2,' rpm')
##CHAPTER 7 ILLUSRTATION 4 PAGE NO 199
##TITLE:GOVERNORS
##FIGURE 7.7
import math
##===========================================================================================
##INPUT DATA
g=9.81## ACCELERATION DUE TO GRAVITY
OA=.20## LENGHT OF UPPER ARM IN m
AC=.20## LENGTH OF LOWER ARM IN m
CD=.025## DISTANCE BETWEEN AXIS AND LOWER ARM IN m
AB=.1## RADIUS OF ROTATION OF BALLS IN m
N2=250## SPEED OF THE GOVERNOR IN rpm
X=.05## SLEEVE LIFT IN m
m=5.## MASS OF BALL IN Kg
M=20.## MASS OF SLEEVE IN Kg
##===========================================================
h2=(OA**2.-AB**2.)**.5## OB DISTANCE IN m IN FIGURE
h21=(AC**2.-(AB-CD)**2.)**.5## BD DISTANCE IN m IN FIGURE
TANbeeta=(AB-CD)/h21## TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL
TANalpha=AB/h2## TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL
k=TANbeeta/TANalpha
c=X/(2.*(h2*(1.+k)-X))## PERCENTAGE INCREASE IN SPEED
n=c*N2## INCREASE IN SPEED IN rpm
N1=N2+n## SPEED AFTER LIFT OF SLEEVE
E=c*g*((2.*m/(1.+k))+M)## GOVERNOR EFFORT IN N
P=E*X## GOVERNOR POWER IN N-m
print'%s %.1f %s %.2f %s %.1f %s '%('SPEED OF THE GOVERNOR WHEN SLEEVE IS LIFT BY 5 cm = ',N1,' rpm'' GOVERNOR EFFORT = ',E,' N' 'GOVERNOR POWER = ',P,' N-m')
##CHAPTER 7 ILLUSRTATION 5 PAGE NO 200
##TITLE:GOVERNORS
##FIGURE 7.8
import math
##===========================================================================================
##INPUT DATA
g=9.81## ACCELERATION DUE TO GRAVITY
OA=.30## LENGHT OF UPPER ARM IN m
AC=.30## LENGTH OF LOWER ARM IN m
m=10.## MASS OF BALL IN Kg
M=50.## MASS OF SLEEVE IN Kg
r=.2## RADIUS OF ROTATION IN m
CD=.04## DISTANCE BETWEEN AXIS AND LOWER ARM IN m
F=15.## FRICTIONAL LOAD ACTING IN N
##============================================================
h=(OA**2-r**2)**.5## HIEGTH OF THE GOVERNOR IN m
AE=r-CD## AE VALUE IN m
CE=(AC**2-AE**2)**.5## BD DISTANCE IN m
TANalpha=r/h## TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL
TANbeeta=AE/CE## TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL
k=TANbeeta/TANalpha
N=((895./h)*(m+(M*(1.+k)/2.))/m)**.5## EQULIBRIUM SPEED IN rpm
N1=((895./h)*((m*g)+(M*g+F)/2.)*(1.+k)/(m*g))**.5## MAX SPEED IN rpm
N2=((895./h)*((m*g)+(M*g-F)/2.)*(1.+k)/(m*g))**.5## MIN SPEED IN rpm
R=N1-N2## RANGE OF SPEED
print'%s %.1f %s %.1f %s '%('EQUILIBRIUM SPEED OF GOVERNOR = ',N,' rpm'' RANGE OF SPEED OF GOVERNOR= ',R,' rpm')
##CHAPTER 7 ILLUSRTATION 6 PAGE NO 202
##TITLE:GOVERNORS
##FIGURE 7.9
import math
##===========================================================================================
##INPUT DATA
g=9.81## ACCELERATION DUE TO GRAVITY
OA=.30## LENGHT OF UPPER ARM IN m
AC=.30## LENGTH OF LOWER ARM IN m
m=5.## MASS OF BALL IN Kg
M=25.## MASS OF SLEEVE IN Kg
X=.05## LIFT OF THE SLEEVE
alpha=30.## ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL
##==============================================
h2=OA*math.cos(alpha/57.3)## HEIGHT OF THE GOVERNOR AT LOWEST POSITION OF SLEEVE
h1=h2-X/2.## HEIGHT OF THE GOVERNOR AT HEIGHT POSITION OF SLEEVE
F=((h2/h1)*(m*g+M*g)-(m*g+M*g))/(1.+h2/h1)## FRICTION AT SLEEVE IN N
N1=((m*g+M*g+F)*895./(h1*m*g))**.5## MAX SPEEED OF THE GOVVERNOR IN rpm
N2=((m*g+M*g-F)*895./(h2*m*g))**.5## MIN SPEEED OF THE GOVVERNOR IN rpm
R=N1-N2## RANGE OF SPEED IN rpm
print'%s %.1f %s %.1f %s'%('THE VALUE OF FRICTIONAL FORCE= ',F,' F'' RANGE OF SPEED OF THE GOVERNOR = ',R,' rpm')
##CHAPTER 7 ILLUSRTATION 7 PAGE NO 203
##TITLE:GOVERNORS
import math
##===========================================================================================
##INPUT DATA
PI=3.147
m=3## MASS OF EACH BALL IN Kg
a=.12## LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m
b=.08## LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m
r2=.12## RADIUS OF ROTATION OF THE BALL FOR LOWEST POSITION IN m
N2=320.## SPEED OF GOVERNOR AT THE BEGINING IN rpm
S=20000.## STIFFNESS OF THE SPRING IN N/m
h=.015## SLEEVE LIFT IN m
##==================================================
Fc2=m*(2.*PI*N2/60.)**2*r2## CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N
L=2*a*Fc2/b## INITIAL LOAD ON SPRING IN N
r1=a/b*h+r2## MAX RADIUS OF ROTATION IN m
Fc1=(S*(r1-r2)*(b/a)**2/2)+Fc2## CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N
N1=(Fc1/(m*r1)*(60./2./PI)**2)**.5
print'%s %.1f %s %.1f %s '%('INITIAL LOAD ON SPRING =',L,' N'' EQUILIBRIUM SPEED CORRESPONDING TO LIFT OF 15 cm =',N1,' rpm')
##CHAPTER 7 ILLUSRTATION 8 PAGE NO 204
##TITLE:GOVERNORS
##===========================================================================================
##INPUT DATA
PI=3.147
m=3## MASS OF BALL IN Kg
r2=.2## INITIAL RADIUS OF ROTATION IN m
a=.11## LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m
b=.15## LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m
h=.004## SLEEVE LIFT IN m
N2=240.## INITIAL SPEED IN rpm
n=7.5## FLUCTUATION OF SPEED IN %
##===================================
w2=2.*PI*N2/60.## INITIAL ANGULAR SPEED IN rad/s
w1=(100.+n)*w2/100.## FINAL ANGULAR SPEED IN rad/s
F=2.*a/b*m*w2**2.*r2## INITIAL COMPRESSIVE FORCE IN N
r1=r2+a/b*h## MAX RDIUS OF ROTATION IN m
S=2.*((m*w1**2.*r1)-(m*w2**2.*r2))/(r1-r2)*(a/b)**2.
print'%s %.1f %s %.1f %s'%('INITIAL COMPRESSIVE FPRCE = ',F,' N'' STIFFNESS OF THE SPRING = ',S/1000,' N/m')
##CHAPTER 7 ILLUSRTATION 9 PAGE NO 204
##TITLE:GOVERNORS
##FIGURE 7.3(C)
##===========================================================================================
##INPUT DATA
g=9.81## ACCELERATION DUE TO GRAVITY
PI=3.147
r=.14## DISTANCE BETWEEN THE CENTRE OF PIVOT OF BELL CRANK LEVER AND AXIS OF GOVERNOR SPINDLE IN m
r2=.11## INITIAL RADIUS OF ROTATION IN m
a=.12## LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m
b=.10## LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m
h=.05## SLEEVE LIFT IN m
N2=240## INITIAL SPEED IN rpm
F=30## FRICTIONAL FORCE ACTING IN N
m=5## MASS OF EACH BALL IN Kg
##==========================================
r1=r2+a/b*h## MAX RADIUS OF ROTATION IN m
N1=41.*N2/39.## MAX SPEED OF ROTATION IN rpm
N=(N1+N2)/2.## MEAN SPEED IN rpm
Fc1=m*(2.*PI*N1/60.)**2.*r1## CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N
Fc2=m*(2.*PI*N2/60.)**2.*r2## CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N
c1=r1-r## FROM FIGURE 7.3(C) IN m
a1=(a**2.-c1**2.)**.5## FROM FIGURE 7.3(C) IN m
b1=(b**2.-(h/2.)**2.)**.5## FROM FIGURE 7.3(C) IN m
c2=r-r2## FROM FIGURE 7.3(C) IN m
a2=a1## FROM FIGURE 7.3(C) IN m
b2=b1## FROM FIGURE 7.3(C) IN m
S1=2.*((Fc1*a1)-(m*g*c1))/b1## SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS
S2=2.*((Fc2*a2)-(m*g*c2))/b2## SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS
S=(S1-S2)/h## STIFFNESS OF THE SPRING IN N/m
Is=S2/S## INITIAL COMPRESSION OF SPRING IN m
P=S2+(h/2.*S)## SPRING FORCE OF MID PORTION IN N
n1=N*((P+F)/P)**.5## SPEED,WHEN THE SLEEVE BEGINS TO MOVE UPWARDS FROM MID POSITION IN rpm
n2=N*((P-F)/P)**.5## SPEED,WHEN THE SLEEVE BEGINS TO MOVE DOWNWARDS FROM MID POSITION IN rpm
A=n1-n2## ALTERATION IN SPEED IN rpm
print'%s %.1f %s %.1f %s '%('INTIAL COMPRESSION OF SPRING= ',Is*100,' cm''ALTERATION IN SPEED = ',A,' rpm')
##CHAPTER 7 ILLUSRTATION 10 PAGE NO 206
##TITLE:GOVERNORS
##FIGURE 7.10
import math
##===========================================================================================
##INPUT DATA
PI=3.147
AE=.25## LENGTH OF UPPER ARM IN m
CE=.25## LENGTH OF LOWER ARM IN m
EH=.1## LENGTH OF EXTENDED ARM IN m
EF=.15## RADIUS OF BALL PATH IN m
m=5.## MASS OF EACH BALL IN Kg
M=40.## MASS OF EACH BALL IN Kg
##===================================================================
h=(AE**2.-EF**2.)**.5## HEIGHT OF THE GOVERNOR IN m
EM=h
HM=EH+EM## FROM FIGURE 7.10
N=((895./h)*(EM/HM)*((m+M)/m))**.5
print'%s %.1f %s'%('EQUILIBRIUM SPEED OF GOVERNOR =',N,' rpm')
##CHAPTER 7 ILLUSRTATION 11 PAGE NO 207
##TITLE:GOVERNORS
##FIGURE 7.11
import math
##===========================================================================================
##INPUT DATA
PI=3.147
g=9.81## ACCELERATION DUE TO GRAVITY IN N/mm**2
AE=.25## LENGTH OF UPPER ARM IN m
CE=.25## LENGTH OF LOWER ARM IN m
ER=.175## FROM FIGURE 7.11
AP=.025## FROM FIGURE 7.11
FR=AP## FROM FIGURE 7.11
CQ=FR## FROM FIGURE 7.11
m=3.2## MASS OF BALL IN Kg
M=25.## MASS OF SLEEVE IN Kg
h=.2## VERTICAL HEIGHT OF GOVERNOR IN m
EM=h## FROM FIGURE 7.11
AF=h## FROM FIGURE 7.11
N=160.## SPEED OF THE GOVERNOR IN rpm
HM=(895.*EM*(m+M)/(h*N**2.*m))
x=HM-EM## LENGTH OF EXTENDED LINK IN m
T1=g*(m+M/2.)*AE/AF## TENSION IN UPPER ARM IN N
print'%s %.3f %s %.1f %s'%('LENGTH OF EXTENDED LINK = ',x,' m''TENSION IN UPPER ARM =',T1,' N')
##CHAPTER 7 ILLUSRTATION 12 PAGE NO 208
##TITLE:GOVERNORS
##FIGURE 7.12,7.13
import math
##===========================================================================================
##INPUT DATA
PI=3.147
EF=.20## MINIMUM RADIUS OF ROTATION IN m
AE=.30## LENGTH OF EACH ARM IN m
A1E1=AE## COMPARING FIRUES 7.12&7.13
EC=.30## LENGTH OF EACH ARM IN m
E1C1=EC## LENGTH OF EACH ARM IN m
ED=.165## FROM FIGURE 7.12 IN m
MC=ED## FROM FIGURE 7.12
EH=.10## FROM FIGURE 7.12 IN m
m=8.## MASS OF BALL IN Kg
M=60.## MASS OF SLEEVE IN Kg
DF=.035## SLEEVE DISTANCE FROM AXIS IN m
E1F1=.25## MAX RADIUS OF ROTATION IN m
g=9.81
##=========================================================
alpha=math.asin((EF/AE))*57.3## ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL IN DEGREES
beeta=math.asin((ED/EC))*57.3## ANGLE OF INCLINATION OF THE ARM TO THE HORIZONTAL IN DEGREES
k=math.tan(beeta/57.3)/math.tan(alpha/57.3)
h=(AE**2.-EF**2.)**.5## HEIGHT OF GOVERNOR IN m
EM=(EC**2.-MC**2.)**.5## FROM FIGURE 7.12 IN m
HM=EM+EH
N2=(895.*EM*(m+(M/2.*(1.+k)))/(h*HM*m))**.5## EQUILIBRIUM SPEED AT MAX RADIUS
HC=(HM**2.+MC**2.)**.5## FROM FIGURE 7.13 IN m
H1C1=HC
gama=math.atan((MC/HM))*57.3
alpha1=math.asin((E1F1/A1E1))*57.3
E1D1=E1F1-DF## FROM FIGURE 7.13 IN m
beeta1=math.asin((E1D1/E1C1))*57.3
gama1=gama-beeta+beeta1
r=H1C1*math.sin(gama1/57.3)+DF## RADIUS OF ROTATION IN m
H1M1=H1C1*math.cos((gama1/57.3))
I1C1=E1C1*math.cos(beeta1/57.3)*(math.tan(alpha1/57.3)+math.tan(beeta1/57.3))## FROM FIGURE IN m
M1C1=H1C1*math.sin(gama1/57.3)
w1=(((m*g*(I1C1-M1C1))+(M*g*I1C1)/2.)/(m*r*H1M1))**.5## ANGULAR SPEED IN rad/s
N1=w1*60./(2.*PI)## ##SPEED IN m/s
print'%s %.1f %s %.1f %s '%('MINIMUM SPEED OF ROTATION =',N2,' rpm'' MAXIMUM SPEED OF ROTATION = ',N1,' rpm')