#Variable Declaration
Pi = 3.21e5 #Recommended tyre pressure, Pa
Ti = -5.00 #Initial Tyre temperature, °C
Tf = 28.00 #Final Tyre temperature, °C
#Calculations
Ti = 273.16 + Ti
Tf = 273.16 + Tf
pf = Pi*Tf/Ti #Final tyre pressure, Pa
#Results
print 'Final Tyre pressure is %6.2e Pa'%pf
#Variable Declaration
phe = 1.5 #Pressure in Helium chamber, bar
vhe = 2.0 #Volume of Helium chamber, L
pne = 2.5 #Pressure in Neon chamber, bar
vne = 3.0 #Volume of Neon chamber, L
pxe = 1.0 #Pressure in Xenon chamber, bar
vxe = 1.0 #Volume of Xenon chamber, L
R = 8.314e-2 #Ideal Gas Constant, L.bar/(mol.K)
T = 298 #Temperature of Gas, K
#Calculations
nhe = phe*vhe/(R*T) #Number of moles of Helium, mol
nne = pne*vne/(R*T) #Number of moles of Neon, mol
nxe = pxe*vxe/(R*T) #Number of moles of Xenon, mol
n = nhe + nne + nxe #Total number of moles, mol
V = vhe + vne + vxe #Total volume of system, L
xhe = nhe/n
xne = nne/n
xxe = nxe/n
P = n*R*T/(V)
phe = P*xhe #Partial pressure of Helium, bar
pne = P*xne #Partial pressure of Neon, bar
pxe = P*xxe #Partial pressure of Xenon, bar
#Results
print 'Moles of He=%4.3f, Ne=%4.3f and, Xe=%4.3f in mol'%(nhe,nne,nxe)
print 'Mole fraction of xHe=%4.3f, xNe=%4.3f and, xXe=%4.3f'%(xhe,xne,xxe)
print 'Final pressure is %4.3f bar'%P
print 'Partial pressure of pHe=%4.3f, pNe=%4.3f and, pXe=%4.3f in bar'%(phe,pne,pxe)
#Variable Declaration
T = 300.0 #Nitrogen temperature, K
v1 = 250.00 #Molar volume, L
v2 = 0.1 #Molar volume, L
a = 1.37 #Van der Waals parameter a, bar.dm6/mol2
b = 0.0387 #Van der Waals parameter b, dm3/mol
R = 8.314e-2 #Ideal Gas Constant, L.bar/(mol.K)
n = 1.
#Calculations
p1 = n*R*T/v1
p2 = n*R*T/v2
pv1 = n*R*T/(v1-n*b)- n**2*a/v1**2
pv2 = n*R*T/(v2-n*b)- n**2*a/v2**2
#Results
print 'Pressure from ideal gas law = %4.2e bar nad from Van der Waals equation = %4.2e bar '%(p1, pv1)
print 'Pressure from ideal gas law = %4.1f bar nad from Van der Waals equation = %4.1f bar '%(p2, pv2)