from math import log
#Variable Declaration
U = 1.00e3 #Total internal energy, J
hnu = 1.00e-20 #Energy level separation, J
NA = 6.022e23 #Avagadro's Number, 1/mol
k = 1.38e-23 #Boltzmann constant, J/K
n = 1 #Number of moles, mol
#Calcualtions
T = hnu/(k*log(n*NA*hnu/U-1.))
#Results
print 'For Internal energy to be %4.1f J temperature will be %4.1f K'%(U,T)
from math import exp
#Variable Declaration
g0 = 3.0 #Ground State partition function
labda = 1263e-9 #Wave length in nm
T = 500. #Temperature, K
c = 3.00e8 #Speed of light, m/s
NA = 6.022e23 #Avagadro's Number, 1/mol
k = 1.38e-23 #Boltzmann constant, J/K
n = 1.0 #Number of moles, mol
h = 6.626e-34 #Planks's Constant, J.s
#Calcualtions
beta = 1./(k*T)
eps = h*c/labda
qE = g0 + exp(-beta*eps)
UE = n*NA*eps*exp(-beta*eps)/qE
#Results
print 'Energy of excited state is %4.2e J'%eps
print 'Electronic partition function qE is %4.3e'%qE
print 'Electronic contribution to internal enrgy is %4.3e J'%UE
from math import log, pi, sqrt
#Variable Declaration
Mne = 0.0201797 #Molecular wt of ne, kg/mol
Mkr = 0.0837980 #Molecular wt of kr, kg/mol
Vmne = 0.0224 #Std. state molar volume of ne, m3
Vmkr = 0.0223 #Std. state molar volume of kr, m3
h = 6.626e-34 #Planks's Constant, J.s
NA = 6.022e23 #Avagadro's Number, 1/mol
k = 1.38e-23 #Boltzmann constant, J/K
T = 298 #Std. state temeprature,K
R = 8.314 #Ideal gas constant, J/(mol.K)
n = 1.0 #Number of mole, mol
#Calcualtions
mne = Mne/NA
mkr = Mkr/NA
Labdane = sqrt(h**2/(2*pi*mne*k*T))
Labdakr = sqrt(h**2/(2*pi*mkr*k*T))
Sne = 5.*R/2 + R*log(Vmne/Labdane**3)-R*log(NA)
Skr = 5.*R/2 + R*log(Vmkr/Labdakr**3)-R*log(NA)
#Results
print 'Thermal wave lengths for Ne is %4.2e m3'%Labdane
print 'Std. Molar entropy for Ne is %4.2f J/(mol.K)'%Sne
print 'Thermal wave lengths for Kr is %4.2e m3'%Labdakr
print 'Std. Molar entropy for Kr is %4.2f J/(mol.K)'%Skr
from math import log, pi
#Variable Declaration
M = 0.040 #Moleculat wt of Ar, kg/mol
h = 6.626e-34 #Planks's Constant, J.s
NA = 6.022e23 #Avagadro's Number, 1/mol
k = 1.38e-23 #Boltzmann constant, J/K
T = 298.15 #Std. state temeprature,K
P = 1e5 #Std. state pressure, Pa
R = 8.314 #Ideal gas constant, J/(mol.K)
n = 1.0 #Number of mole, mol
#Calcualtions
m = M/NA
Labda3 = (h**2/(2*pi*m*k*T))**(3./2)
G0 = -n*R*T*log(k*T/(P*Labda3))
#Results
print 'Thermal wave lengths for Ne is %4.2e m3'%Labda3
print 'The Gibbs energy for 1 mol of Ar is %6.2f kJ'%(G0/1000)