# Variables
T = 70. #K
Tr = 85.5 #K
# Calculations
cvrot = 1.1
cvtra = 1.5
cv = cvtra+cvrot
# Results
print "Cv total = %.1f R"%(cv)
# Variables
T = 2000. #K
Tr = 3340. #K
# Calculations
print ("From fig 8.2")
cvrot = 0.85
cvtra = 1.5
cvvib = 1.
cv = cvtra+cvrot+cvvib
# Results
print "Cv total = %.2f R"%(cv)
# Variables
T = 200. #K
the = 398. #K
# Calculations
ratio = T/the
cv = 4.9
# Results
print "Specific heat of aluminium = %.1f cal/g mol K"%(cv)
# Variables
T = 10. #K
td = 315. #K
# Calculations
cv = 464.4 *(T/td)**3
# Results
print "specific heat of copper = %.5f cal/g mol K"%(cv)
# Variables
import math
N0 = 6.025*10**23
M = 63.57
d = 8.94 #g/cc
h = 6.624*10**-27
me = 9.1*10**-28
# Calculations
NbyV = N0*d/M
mu0 = h**2 *(3*NbyV/ math.pi)**(2./3) /(8*me)
e0 = 0.6*mu0*10**-7
Teq = 2*e0/(3*1.38*10**-23)
# Results
print "Equivalent temperature = %d K"%(Teq)
# check using calculator
# Variables
import math
T = 300. #K
mu = 1.13*10**-18
k = 1.38*10**-23
# Calculations
cv = math.pi**2 *k*T/(2*mu)
# Results
print "Electron contribution = %.4f R"%(cv)
# Variables
sig = 5.668*10**-5
T1 = 1000. #K
T2 = 2000. #K
# Calculations
Eb1 = sig*T1**4 *10**-7
Eb2 = sig*T2**4 *10**-7
# Results
print "total energy emitted in case 1 = %.3f Watts/cm**2"%(Eb1)
print " total energy emitted in case 2 = %.3f Watts/cm**2"%(Eb2)