# Variables
import math
R = 4.576 #cal deg**-1 mole**-1
T = 700 #C
Kp = 0.71
p1 = 1.5 #atm
p2 = 5 #atm
# Calculations
dF = -R*(273+T)*(math.log(Kp)-math.log((p1*p2)/(10*p2)))*0.77
# Results
print 'Free energy = %.f cal'%(dF-10)
import math
# variables and calculations
# for CO2
Tc = 304. #K
Pc = 72.9 # atm
a = 873. # K
b = 500. # atm
theta1 = a/Tc
pi2 = b/Pc
YCO2 = 1.09
# for H2
Tc = 33.2 #K
Pc = 12.8 # atm
theta1 = a/(Tc+8)
pi2 = b/(Pc+8)
YH2 = 1.10
# for CO
Tc = 134. #K
Pc = 34.6 # atm
theta1 = a/Tc
pi2 = b/Pc
YCO = 1.23
# for H20
Tc = 647. #K
Pc = 218 # atm
theta1 = a/Tc
pi2 = b/Pc
YHO2 = 0.77
Jy = YCO2*YH2/(YCO*YHO2)
# results
print "Jy = %.2f"%Jy
# Variables
import math
k1 = 4600.
k2 = -8.64
k3 = 1.86*10**-3
k4 = -0.12*10**-6
k5 = 12.07
T = 600. #K
# Calculations
Kf = math.e**(k1*(1/T)+k2*math.log10(T)+k3*T+k4*T**2+k5)
# Results
print 'Kf = %.3f '%(Kf)
# Variables
import math
k = -8810 #cal
k1 = -7.46 #cal K**-1
k2 = 3.69*10**-3 #cal K**-2
k3 = -0.47*10**-6 #cak K**-3
T = 298 #K
# Calculations
dH = k+k1*T+k2*T**2+k3*T**3
# Results
print 'Standard heat of reaction = %.f cal'%(dH)
# Variables
import math
k1 = -9130 #cal
k2 = 7.46 #cal K**-1
k3 = -3.69*10**-3 #K**-2
k4 = 0.235*10**-6 #K**-3
k5 = -12.07
T = 298 #K
R = 1.987 #cal deg**-1 mole**-1
# Calculations
dF = k1+k2*T*math.log(T)+k3*T**2+k4*T**3+k5*R*T
# Results
print 'Free energy = %.f cal'%(dF)
# rounding off error is there. please check.
# Variables
T = 25 #C
dF1 = 61.44 #kcal
dF = 54.65 #kcal
R = 4.576 #cal deg**-1 mole**-1
# Calculations
Kf = 10**(-(dF1-dF)*10**3/(R*(273.2+T)))
# Results
print 'Kf at this temperature = %.2e '%(Kf)
# Variables
import math
R = 4.576 #cal mole**-1 K**-1
T = 25. #C
p1 = 122. #mm
F1 = -5.88 #kcal
F2 = -33 #kcal
# Calculations
dF = R*(273.2+T)*math.log10(p1/760)
F = F2+F1+(dF/1000)
# Results
print 'Standard free energy change = %.f kcal'%(F)
# Variables
r = 3.38*10**-4 #volt deg**-1
F = 23070. #cal volt**-1 deg**-1
Sagcl = 23 #E.U.mole**-1
Shg = 18.5 #E.U.mole**-1
Sag = 10.2 #E.U.mole**-1
# Calculations
dS = F*r
shgcl = 2*-(dS-Sagcl-Shg+Sag)
# Results
print 'dS = %.1f E.U.cal deg**-1'%(dS)
print ' molar entropy = %.f E.U.mole**-1'%(shgcl)
# Variables
s1 = 44.5 #cal deg**-1 mole**-1
s2 = 49 #cal deg**-1 mole**-1
s3 = 51.06 #cal deg**-1 mole**-1
s4 = 16.75 #cal deg**-1 mole**-1
h1 = -17.9 #kcal mole**-1
h2 = 0 #kcal mole**-1
h3 = -94 #kcal mole**-1
h4 = -68.3 #kcal mole**-1
T = 25 #C
n = 2
# Calculations
dS = s3+2*s4-s1-n*s2
dH = h3+n*h4-h1-n*h2
dF = -0.001*(273.2+T)*dS+dH
# Results
print 'Entropy Change = %.1f E.U'%(dS)
print ' Enthalpy Change = %.1f E.U'%(dH)
print ' Standard free energy = %.1f kcal'%(dF)
# Variables
import math
a = -15.84
b = 22.84*10**-3
c = -80.97*10**-7
T = 25. #C
H1 = -48.1 #kcal
H2 = -26.4
dS = 53.09
T1 = 327. #C
r1 = 0.58
r2 = 1.1
r3 = 1.13
# Calculations
dH = round((H1-H2)*1000-a*(273.2+T)-0.5*b*(273.2+T)**2-0.33*c*(273.2+T)**3,-1)
dF = round((H1-H2)*1000+(273.2+T)*dS,-1)
I = (dF-dH+a*(273.2+T)*math.log(273.2+T)+0.5*b*(273.2+T)**2+0.166*c*(273.2+T)**3)/(273.2+T)
dF1 = (dH-a*(273+T1)*math.log(273+T1)-0.5*b*(273+T1)**2-0.166*c*(273+T1)**3)+I*(273+T1)
Kf = 10**(-dF1/(4.576*(273+T1)))
Jr = r1/(r2**2*r3)
Kp = Kf/Jr
# Results
print 'heat of formation = %d cal'%(dH)
print ' Entropy = %.f cal'%(dF)
print ' Inertia = %.2f gm cm**2'%(I)
print ' Entropy = %.f cal'%(dF1)
print ' Kf = %.1e '%(Kf)
print ' Kp = %.1e '%(Kp)
# rounding off error is there. please check.
# Variables
F1 = 24.423 #cal deg**-1
F2 = 21.031 #cal deg**-1
F3 = 37.172 #cal deg**-1
H1 = 2.024 #kcal
H2 = 1.035 #kcal
H3 = 2.365 #kcal
H = -57.8 #kcal
T = 25. #C
# Calculations
dF = F3-F1-F2
dH = H3-H1-H2
Hf = H-dH
F = Hf-((273.2+T)*dF*10**-3)
# Results
print 'Standard free energy = %.2f kcal'%(F)
# Variables
import math
T = 1000 #C
j = 1.5
Q = 35840 #cal
I = 743*10**-40 #g cm**2
w = 214 #cm**-2
Kf = 0.184
# Results
print 'Equilibrium constant = %.3f '%(Kf)
# Note :NO SOLUTION IS GIVEN TO SOLVE Kf INCOMPLETE SOLUTION IN THE TEXTBOOK
# Variables
import math
dH = 83 #cal
R = 1.98 #cal mole K**-1
T = 25 #C
M1 = 128 #gms
M2 = 4 #gms
M3 = 2 #gms
M4 = 129 #gms
I1 = 4.31 #g cm**2
I2 = 0.920 #g cm**2
I3 = 0.459 #g cm**2
I4 = 8.55 # g cm**2
# Calculations
K = 1+10**((-dH/(2.303*R*(298)))+1.5*math.log(M1**2*M2/(M3*M4**2))+math.log(I1**2*I2/(I3*I4**2)))
# Results
print 'Equilibrium constant = %.1f '%(K)
# note : rounding off error.