# Chapter 1 : introduction to transport phenomena¶

### Example 1.1 - Page No : 6¶

In :
# Variables
v=0.01283;  			 #[m**3] - volume of tank in m**3
v=0.4531;  			     #[ft**3] - volume of tank in ft**3
p=2;  			         #[atm] - pressure
T=1.8*300;  			 #[degR] - temperature
R=0.73;  		       	 #[(atm*ft**3)/(lbmol*degR)] - gas constant

# Calculations
# usin the equation of state for an ideal gas pv=nRT
n=(p*v)/(R*T);

xN2=0.5;  			 # fractiom of N2 in math.tank
nN2=xN2*n;
Ca=nN2/v;

# Results
print "no. of moles , n = %.3e"%n
print "Ca = %.2e lb*mol/ft**3"%(Ca);

no. of moles , n = 2.299e-03
Ca = 2.54e-03 lb*mol/ft**3


### Example 1.2 - Page No :9¶

In :
from numpy import *

# the three unknowns are x,y,z
# the three equations are-
# x+y+z = 1500
# (1) 0.05*x+0.15*y+0.40*z = 1500*0.25
# (2) 0.95*x+0.00*y+0.452*z = 1500*0.50
# Variables
a = array([[1, 1, 1],[0.05, 0.15, 0.40],[0.95, 0 ,0.452]])
d = array([[1500.],[1500.*0.25],[1500.*0.50]])

# Calculations
#ainv = linalg.inv(a);
#sol = ainv * d;
sol = linalg.solve(a,d)
# Results
print "the amount of concentrated HNO3 is %.0fkg \
\nthe amount of concentrated H2SO4 is %.0fkg \
\nthe amount of waste acids is %.0fkg"%(sol,sol,round(sol,-1));

# Answer may be different because of rounding error and inbuilt function solve.

the amount of concentrated HNO3 is 307kg
the amount of concentrated H2SO4 is 423kg
the amount of waste acids is 770kg