Chapter 3: Electrolytic Processes

Example 3.1, Page 79

In [11]:
import math

#Variable declaration
r=5;#in cm
S=4*math.pi*r**2;
t=0.005;#in mm
d=10.5;

#Calculations
m=S*t*d*10**-3;
Z=(0.001118*3600)/1000;
Amr=m/Z;

#Result
print "ampere hour required,(Ampere-hour)= %.2f"%Amr
ampere hour required,(Ampere-hour)= 4.10

Example 3.2, Page 80

In [12]:
#Variable declaration
m=20.;#in gm
I=120;#in A
t=10*60;#in sec
t1=5*60;#in sec
I1=100;#in A

#Calculations
Cec=63.18/2;
Cen=58.6/2;
Z=m/(I*t);
Z1=(Z*(Cec/Cen))*10**-3;
m1=Z1*I1*t1;

#Result
print "mass of copper depsoited is ",round(m1,3),"kg or ",(round(m1*10**3)),"gm"
mass of copper depsoited is  0.009 kg or  9.0 gm

Example 3.3, Page 80

In [13]:
#Variable declaration
Z=1.044*10**-8;#in kg/C
I=40;#in A
t=1*60*60;#in seconds

#Calculations
m1=Z*I*t;

#Result
print "mass of copper depsoited is ",round(m1,4),"kg or ",round((m1*10**3),1),"gm"
mass of copper depsoited is  0.0015 kg or  1.5 gm

Example 3.4, Page 80

In [14]:
#Variable declaration
A=0.00025;#in m^2
D=8900;#in kg/m^3
Z=32.95*10**-8;#in kg/C
I=1;#in A

#Calculations
t=100*60;#in seconds
m=Z*I*t;#in kg
v=m/D;
T=(v/A)*10**3;

#Result
print "thickness of copper deposited,T(mm) = %.3f"%T
thickness of copper deposited,T(mm) = 0.889

Example 3.5, Page 80

In [15]:
#Variable declaration
A=0.00025;#in m^2
D=8900;#in kg/m^3
Z=32.95*10**-8;#in kg/C
I=1.5;#in A

#Calculations
t=60*60;#in seconds
m=Z*I*t;#in kg
v=m/D;
T=(v/A);

#Result
print "Thickness of copper deposited is ",round(T,4),"m or ",round((T*10**3),1),"mm"
Thickness of copper deposited is  0.0008 m or  0.8 mm

Example 3.6, Page 80

In [16]:
#Variable declaration
m=50;# in gm
t=2*60*60;# in sec
ECE_silver=111.8*10**-8;# in kg C^-1
atomic_weight1=108;# for silver
atomic_weight2=63.5;#for copper
valency=1;#for silver

#Calculations
Ces=atomic_weight1/valency;# chemical equivalent of silver
Cec=atomic_weight2/2;# chemical equivalent of copper
Z=ECE_silver*(Cec/Ces);
I=(m*10**-3)/(Z*t);

#Result
print "current,I(A) = %.2f"%I
current,I(A) = 21.13

Example 3.7, Page 81

In [17]:
#Variable declaration
a=500;# electrolytic cells
I=6000;#in A
t=40;#in hour/week
Z=32.81*10**-8*3600;#in kg/A-h
V=0.25;# in volts

#Calculations
Ah=a*I*(t*52);# total number of ampere hour per annum
Ao=Z*Ah*10**-3;# annual output in tonnes
Ea=Ah*V*10**-3;# energy consumed per annum in kWh
Et=Ea/Ao;

#Result
print "energy consumption,Et(kWh/tonne) = %.2f"%Et
energy consumption,Et(kWh/tonne) = 211.66

Example 3.8, Page 81

In [18]:
#Variable declaration
Z=1.0384*10**-8;#in kg/C
VbyZ=14.212*10**7;# in joules

#Calculations
V=VbyZ*Z;

#Result
print "voltage,V(volts) = %.3f"%V
voltage,V(volts) = 1.476

Example 3.9, Page 82

In [19]:
#Variable declaration
ECE_silver=111*10**-8;#in kg/C
Cew_silver=107.98;#chemical equivalent of silver
Cew_al=27/3;#chemical equivalent of aluminium

#Calculations
Z=(ECE_silver*Cew_al)/Cew_silver;
C_efficiency=0.92;
I=3000;#in A
t=24*60*60;#in seconds
m=Z*I*t*C_efficiency;

#Result
print "mass of aluminium,m(kg) = %.3f"%m
mass of aluminium,m(kg) = 22.062

Example 3.10, Page 82

In [20]:
import math

#Variable declaration
d=0.1;#in m
l=.25;# in m
Tc=2;# thickness of coating in mm
D=8.9;#density of metal in gm/CC
C_density=160;#in A/sq
I_efficiency=0.9;

#Calculations&Results
S=math.pi*d*l;
m=S*Tc*10**-3*D*10**3;
Z=30.43*10**-8;# in kg/C
Q=(m/Z)/3600;# in A-h
Q_dash=Q/I_efficiency;
print "quantity of electricity,Q_dash(A-h) = %.f"%Q_dash
I=C_density*S;
t=Q_dash/I;
print "time required,t(hours) = %.2f"%t
quantity of electricity,Q_dash(A-h) = 1418
time required,t(hours) = 112.84