#initialisation of variables
s = 20. #mph
t = 90. #min
w = 1.31 #ft
h = 7.5 #miles
h1 = 0.22 #ft
t1 = 1100. #min
t2 = 6.0 #min
p = 32.2 #ft
l = 5.12 #length
l1 = 2.8 #length
p1 = 1400. #ft
d = 73. #depth
h3 = 2.06 #ft
e = 173.0 #ft
hi = 0.2 #ft
#CALCULATIONS
W = s*w #mph
hs = h1*((W)**2/p)**0.53*h**0.47 #ft
Ts = t2*(W/p)**0.44*(h/p)**0.28 #sec
Td = t1*h/(p*Ts) #min
Ls = l1/(l*(Ts)**2) #ft
D = d/(l*(Ts)**2) #ft
H = (W)**2*(h*(1/(p1*d))) #ft
hr = h3*l1 #ft
M = e+hi+hr #ft
#RESULTS
print 'the overwater wind speed = %.0f mph'%(W)
print 'the significant wave height = %.1f ft'%(hs)
print 'the significant wave period = %.1f sec'%(Ts)
print 'the minimum wind duration required to reach the significant wave height = %.0f min'%(Td)
print 'the significant wave lenght adn steepness = %.3f ft'%(Ls)
print 'the reservoir depth ratio = %.1f ft'%(D)
print 'the wind tide or set up = % f ft'%(H)
print 'the run up = %.1f ft'%(hr)
print 'the maximum elevation reached by the waves = %.1f ft'%(M)
# rounding off error. please check.
#initialisation of variables
g = 264 #quartz
p = 0.39 #percent
#CALCULATIONS
S = (1-p)*(g-1) #in
#RESULTS
print 'the hydraulic gradient and seepage velocity = %.2f in'%(S)
#incorrect answer in textbook
#initialisation of variables
w = 40 #ft
k = 2*10**-3 #cm/sec
p = 3.28*10**-3 #cfs
h = 6.47*10**5 #gpd
p1 = 0.433 #ft
m = 9 #ft
delh = w/(18*9) #in
k1 = 4.94*10**-4 #cm/sec
#CALCULATIONS
Q = k*p*w*(9./18) #cfs
Q1 = Q*h #gpd/ft width
P = (1-8./18)*w*p1 #Psig
H = k1/k #in
#RESULTS
print 'the seepage through each foot width of the foundation = %.0f gpd/ft/ width'%(Q1*10)
print 'the excess hydrostatic pressure on the upstream side of the bottom of the sheet pilling = %.2f Psig'%(P)
print 'the maximum hydraulic gradient and its relations to the coeeficent = %.2f in'%(H)
#initialisation of variables
d = 120 #ft
w = 16 #ft
d1 = 120/0.8 #ft
p = 60*0.8 #ft
h = 2 #ft
v = 18.74*0.8 #ft
s = 95.23 #ft
s1 = 0.8 #ft
#CALCULATIONS
W = d-h*p #ft
S = s*s1 #ft
#RESULTS
print 'in succession from the intersection of the upstream slop = %.2f ft'%(S)