# Chapter 12 : Water Transmission¶

## Example 12.1 Page No : 12-9¶

In [1]:

#initialisation of variables
c = 100	#in
a = 10	#in
Q = 0.976	#ft

#CALCULATIONS
G = a*Q	#ft

#RESULTS
print 'the graphical basic  = %.2f ft'%(G)

the graphical basic  = 9.76 ft


## Example 12.2 Page No : 12-9¶

In [2]:
import math

#initialisation of variables
a = 27.6	#sq ft
h = 1.37	#ft
d = 1.53*(27.9)**0.38*(1.36)**0.24	#ft

#CALCULATIONS
R = d/4	#ft
A = (math.pi*d**2)/4	#sq ft

#RESULTS
print 'The diameter hydraulics radius and area of the hydraulically equivalent circular conduit = %.1f sq ft'%(A)

The diameter hydraulics radius and area of the hydraulically equivalent circular conduit = 26.7 sq ft


## Example 12.3 Page No : 12-12¶

In [3]:

#initialisation of variables
h1 = 13.5	#ft
h2 = 19.0	#ft
h3 = 27.5	#ft
c1 = 2.0*10**4	#ft
c2 = 2.1*10**4	#ft
c3 = 2.2*10**4	#ft

#CALCULATIONS
H = h1+h2+h3	#ft
C = c1+c2+c3	#ft

#RESULTS
print 'the most economical distributions of the available head = %.1e ft'%(C)

the most economical distributions of the available head = 6.3e+04 ft


## Example 12.4 Page No : 12-28¶

In [1]:
import math

#initialisation of variables
p = 60	#in
h = 20	#percent
a = 1000	#ft
h1 = 40	#percent
c = 0.5	#ft
p1 = 14.3	#ft
p2 = 6.1	#ft
d = 11.7*10**-2	#ft

#CALCULATIONS
deltaV = 26.7 - 18.3     # fps
eq = 3.9*10**-2 * math.sqrt(deltaV/c)*(0.426)**0.356
D = p*eq	     #ft

#RESULTS
print 'the air valve with a discharge the change in slop = %.2f in.'%(D)

# note : slightly different because of rounding off error.

the air valve with a discharge the change in slop = 7.08 in.


## Example 12.5 Page No : 12-29¶

In [2]:
import math

#initialisation of variables
p = 90.	      #deg
h = 48.	      #in
p1 = 100.	#psig
P = (1/2*math.pi)*h**2*p1*0.7071	#lb
r = 3000./54-31	#ft
l = 170.	#in
b = 6.5*10**-6	#ft
w = 46.      	#ft
w1 = 1000.	   #ft

#CALCULATIONS
s = b*w*30*10**6
D = (1./4*math.pi)*h**2*p1	#lb
P = (r)*h**2	#lb
T = math.pi*h*(1/4)*s	#lb
T1 = (1./2)*l	#tons
Del = b*w*w1	#ft per

#RESULTS
print 'The expansion and contraction of the steel line can be as great as = %.1f ft per 1000ft of length, if unrestrained'%(Del)

The expansion and contraction of the steel line can be as great as = 0.3 ft per 1000ft of length, if unrestrained