#initialisation of variables
n = 0.013 #ft
s = 4.90 #ft
v = 0.590 #ft
d = 0.463 #ft
w = 3.9*10**-2 #ft
p = 1.696 #ft
#CALCULATIONS
V = s*v #fps
Q = s*d #cfs
N = (w*p)**2*1000 #percent
#RESULTS
print 'the velocity of flow and rate of discharge = %.2f percent'%(N)
import math
#initialisation of variables
v = 1.34 #fps
s = 3.7*10**-3 #fps
k = 0.8 #ft
r = 20 #ft
k1 = 0.04 #ft
v = 3.0 #fps
v1 = 5.0 #fps
d = 10**-1 #ft
d1 = 1.34 #ft
#CALCULATIONS
V = round((1.49/1.3*10**-2)*(1./4)**(1./6)*(k1*d/30.48*(2.65-1)/1)**(1./2) * 10000,2)
# for v = 3
v1 = 3.
D1 = d*(v1/V)**2
# for v = 5
v2 = 5
D2 = d*(v2/V)**2
#RESULTS
print 'For velocity = %d, the gradient at the which coarse quartz = %.1f cm'%(v1,D1) #incorrect answer in the textbook
print "For velocity = %d, the gradient at the which coarse quartz = %.1f cm"%(v2,D2)
#initialisation of variables
v = 2.5 #fps
q = 0.873 #cfs
s = 5.20 #percent
a = 0.252 #ft
r = 0.684 #ft
r1 = 1.46 #ft
v1 = 0.776 #ft
q1 = 0.196 #ft
n = 0.78 #ft
R = 0.939 #ft
#CALCULATIONS
V = v1*v #fps
Q = q1*q #cfs
R1 = r1*s #percent
Vs = R*v #ft
N = n*Vs #fps
Qs = a*R*q #cfs
N1 = n*Qs #cfs
#RESULTS
print 'the required grades and associated velocity and rates = %.3f cfs'%(V)
print 'the depth and a grade = %.3f cfs'%(Q)
print 'the self cleaning flow = %.3f cfs'%(N1)
#initialisation of variables
Q = 0.873 #cfs
s = 5.20 #percent
d = 0.161 #cfs
q1 = 0.185 #ft
d2 = 2.5 #ft
v = 0.91 #ft
s1 = 1.70 #ft
s3 = 1.46 #ft
w = 0.185 #ft
d1 = 0.30 #ft
v1 = 0.732 #ft
#CALCULATIONS
q = d/Q #cfs
Vs = v*d2 #fps
Ss = s1*s #percent
Va = v1*d2 #fps
Ss1 = s3*s #percent
#RESULTS
print 'the depth and velocity of flow and the required slop = %.1f percent'%(Ss1)
#initialisation of variables
d1 = 0.67 #ft
h1 = 2.00 #ft
h2 = 4.04 #ft
hv1 = 0.062 #ft
hv2 = 0.254 #ft
d = 0.19 #ft
h = 0.2 #ft
h1 = 0.04 #ft
q = 0.644 #ft
q1 = 0.65 #ft
v = 0.92 #ft
d2 = 6.5 #ft
v1 = 3.69 #ft
d3 = 0.542 #ft
hv3 = 0.21 #ft
delv = 0.15 #ft
d4 = 0.02 #ft
#CALCULATIONS
H = d1+hv1 #ft
H1 = d1+hv2 #ft
he = h*d #ft
hi = d+h1 #ft
H2 = d3+hv3 #ft
he1 = h*delv #ft
S = d4+h1 #ft
#RESULTS
print 'the required slope = %.2f ft'%(hi)
print 'the lower sewer and the invert drop in the transition = %.2f ft'%(S)
#initialisation of variables
q = 60 #cfs
D = 4 #ft
w = 0.177 #ft
s = 0.59 #ft
h = 4.0 #ft
d1 = 1.0 #ft
v = 0.90 #ft
d1 = 0.42 #ft
h1 = 6.0 #ft
h2 = 1.5 #ft
dl = 1.3 #ft
p = 0.41 #ft
u = 0.8 #ft
u1 = 3.2 #ft
y = 0.45 #ft
#CALCULATIONS
H = s*D #ft
d2 = d1*D #ft
V = v*D #ft
P = p*D #ft
D1 = y*D #ft
#RESULTS
print 'the critical depth = %.1f ft'%(H)
print 'the alternate stages for an energy = %.1f ft'%(V)
print 'the alternate stages for an energy head = %.1f ft'%(P)
print 'the lower alternate stage with upper alternate stage = %.1f ft'%(D1)
#initialisation of variables
d = 106 #cfs
q = 400. #cfs
d1 = 0.40 #cfs
w = 10 #ft
#CALCULATIONS
D = d/q #cfs
D1 = d1*w #cfs
#RESULTS
print 'the water level in this well rises = %.f ft'%(D1)
import math
#initialisation of variables
Q = (400/78.5*math.sqrt(10*32.2))**2 #ft
N = 0.012 #ft
d = 0.47 #ft
q = 10 #ft
#CALCULATIONS
D = d*q #ft
#RESULTS
print 'the water surface in the sewer when it is flowing at maximum capacity = %.1f ft'%(D)
import math
#initialisation of variable
g = math.sqrt(3) #ft
d = 5.67 #ft
#CALCULATIONS
C = g*d #ft
#RESULTS
print 'The rate of propagation of a discontinuous surge = %.1f ft'%(C)
#initialisation of variables
Q1 = 30 #cfs
Q2 = 16 #cfs
a = 32 #sq ft
r = 1.6 #ft
i = 10**-4 #ft
n = 1.25*10**-2 #ft
h2 = 0.50 #ft
c = 3.33 #ft
h1 = 5.20 #ft
l = 72 #ft
s = 12320 #ft
#CALCULATIONS
L = s-l #ft
h1 = 0.49022 - 8.04*10**-5*l
#RESULTS
print 'the forchheimer s methos = %.0f ft'%(L)
print (Q1**2-Q2**2)/(2*32.2*a**2)
import math
#initialisation of variables
q = 1.0 #cfs
g = 2.0 #percent
g1 = 5.6 #percent
r = 0.015 #cfs
w = 90. #percent
Q = 10*0.9*q #ft
p = 0.10 #ft
h = 3.48*g1**(1./3) #ft
i = 5.6*10**-2
Q0 = 1.
s = 2*10**-2
n = 1.5*10**-2
#CALCULATIONS
q_l = round(1.87*i**0.569*(Q0/(math.sqrt(s)/n))**0.563,2)
l = q_l * 100
Q = 10*0.9*Q0
d = (3.48*32.2**(1./3)) * (q_l)**(2./3)
#RESULTS
print 'The maximum depth of flow in the gutter = %.1f in'%(d)