#initialisation of variables
t1 = 5.25 #yr
t2 = 10.00 #yr
yi = 171000 #in
ye = 111000 #in
yt = 5.23300 #in
yl = 5.04532 #in
yn = 31500 #in
ym = 0.09853 #in
tm = 9.25 #yr
tn = 10.00 #yr
#CALCULATIONS
T = t1/t2 #yr
T1 = tm/tn #yr
Y = yi-ye #in
Yt = yt-yl #in
#RESULTS
print 'the fifth intercensal year = %.3f yr'%(T)
print 'the ninth postcensal year = %.3f yr'%(T1)
from sympy import Symbol
import math
#initialisation of variables
y0 = 30000 #in
y1 = 172000 #in
y2 = 292000 #in
a = 172 #ft
p = 30. #ft
y = 292 #ft
q = 322000 #ft
g = 313 #ft
n = 0.05 #ft
d = -2.442 #ft
t = Symbol('t')
#CALCULATIONS
L = (2*p*a*y2-(a)**2*q)/(p*y-(a)**2) #moreover
m = (g-p)/p #ft
N = n*d #in
Y = g/(1+9.43*math.exp(N)*t) #in
#RESULTS
print 'the saturation populations = %.2f moreover'%(round(L,-3))
print 'the coefficients = %.3f in'%(N)
print 'the equation of a logistic curve = ',(Y)
import math
#initialisation of variables
p = 100000 #in
d = 150. #in
h = 1000000. #in
a1 = 2.0 #draft
a2 = 3.0 #draft
a3 = 1.6 #draft
m = 1.5 #in
q = 2.5 #in
v = 1020. #in
w = 100. #in
t = 0.01 #in
v1 = 13.2 #mgd
#CALCULATIONS
A = d*p/h #mgd
M = m*A #mgd
M1 = q*A #mgd
V = v*math.sqrt(w)*(1-t*math.sqrt(w)) #gpm
D = M+v1 #mgd
L = a1*A #mgd
L1 = (4./3)*M #max
H = a2*A #mgd
H1 = (4./3)*M1 #max
F = a3*A #mgd
F1 = (1.6)*15 #max
#RESULTS
print 'the resulting capacities of the four system = %.f max'%(F1)
#initialisation of variables
r = 48 #in
A = 450 #gpd/acre
B = 8000. #gpd/mile
S = round(5280./350) #manholes/mile
#CALCULATIONS
C = (B-S*100)/12 #gpd/mile
#RESULTS
print 'the ground a quarter of it eventually = %.2f gpd/mile'%(C)
# note : answer in book is wrong. please check.
#initialisation of variables
p1 = 20. #ft
p2 = 30. #ft
w = 5. #person
s = 17800. #in
h = 1200. #in
q = 100. #in
i = 1. #in
#CALCULATIONS
S = p1*p2*i*s/(h*w) #gpcd
P = (q*w*10/S) #percent
#RESULTS
print 'the degree of separation of stormwater = %.0f percent'%(P)
#initialisation of variables
s = 105 #gpcd
m = 315 #gpcd
m1 = 35 #gpcd
Q1 = 360 #gpcd
Q2 = 30 #gpcd
p1 = 20 #pecent
p2 = 15 #persons/acer
D = 21 #persons/acre
I = 2000 #gpd/acre
#CALCULATIONS
A = D*(s+Q2)+I #gpd/acre
R = D*(m+Q2)+I #gpd/acre
L = D*(m1+Q2)+I #gpd/acre
#RESULTS
print 'the average peak and low rates of flow = %.0f gpd/acre'%(round(L,-1))