import math
#initialisation of variables
n = 20. #ft
s = math.sqrt(12676/19.) #ft
c = 45.5 #ft
q = 551400 #ft
q1 = 12700 #ft
h = 8.5 #ft
w = s/c #ft
#CALCULATIONS
D = q/(2*s*q1) #cfs
D1 = D*(1+h/n) #cfs
#RESULTS
print 'the record runoff of a stream draining = %.2f cfs'%(D1)
#initialisation of variables
i = 16./(62)**0.66 #in hr
q = (16*10**0.31)/(62)**0.66 #in hr
c = 1.0 #max
C1 = c*(0.01)**0.31 #in
C2 = c*(0.1)**0.31 #in
x1 = 640 #cfs
#CALCULATIONS
Y1 = C1*i*c*x1 #cfs
Y2 = C2*q*c*x1 #cfs
#RESULTS
print 'the time of concentration = %.f cfs'%(Y2)
# rounding off error.
import math
#initialisation of variables
d = 163*48.5 #cfs
a = 48.5 #ft
q = 100 #cfs
Q = 45.5*a #cfs
c = 0.57 #cfs
v = 1.8 #cfs
p = 0.45 #ft
#CALCULATIONS
P = d/(q*math.sqrt(a)) #percent
C = Q/(a**0.8*(1+2*a**-0.3)) #cfs
d1 = 2.6 #cfs
T = (1-p*c+v*c*2) #cfs
#RESULTS
print 'the meyers rating = %.1f percent'%(P)
print 'the magnitude of the maximum peak flood = %.1f cfs'%(T)