#initialisation of variables
t = 10 #C
s = 74.2 #days
c = 0.01 #mm
d = 245 #mm
#CALCULATIONS
h = s/(d*c) #cm
#RESULTS
print 'the high will water at a temperature = %.1f cm'%(h)
#initialisation of variables
p1 = 1000 #ft
p2 = 50 #ft
g = 20 #ft/mile
v = 5280. #ft
q = 7.5*10**-6 #ft
t = 60 #F
k = 2835 #ft/days
p = 7.5 #ft
#CALCULATIONS
S = g/v #ft
W = k*(g/v) #ft/day
Q = W*p1*p2*q #mgd
P = k*p #ft
P1 = P*p2 #mgd
#RESULTS
print 'the velocity of flow = %.2f mgd'%(Q)
print 'the standard coefficient pf permeability = %.2e mgd'%(P1)
import math
#initialisation of variables
p = 40. #ft
d = 56. #ft
d1 = 140. #ft
p1 = 30. #ft
w = 3.28*10**-4 #fps
#CALCULATIONS
Q = w*(p/d1)*2*d*p #cfs
q = Q/p #cfs
K = w*(p/d1) #fps
x0 = q/(2*math.pi*K) #ft
Z = 2*math.pi*x0 #ft
#RESULTS
print 'the yield of the well if the coefficient of permeability = %.1f ft'%(x0)
print 'the distance of the point of stagnation = %.0f ft'%(Z)
#initialisation of variables
p = 5.*10**6 #ft
Q = 350. #gpm
x = 225. #ft
u = 10.**-2 #ft
g = 1.87 #ft
p2 = 7.*10**2 #ft
p3 = 10.9 #ft
w = 4.0 #ft
t = 114.6 #ft
d = 10. #ft
p1 = 5. #ft
w1 = 3.2*10**4 #ft
W = 21.75 #ft
#CALCULATIONS
T = t*Q*4/p1 #gpd/ft
S = u*(w1)/(g*(p)) #ft
U = g*((S)/(T))*(x**2/d) #ft
P = t*(p2)*p3/(T) #ft
U1 = g*((S)/(T))*(1./d) #ft
P1 = t*(p2)*W/(T) #ft
#RESULTS
print 'the type curve as if a transparency of the observed data had moved into place over the type = %.0f ft'%(P1)
import math
#initialisation of variables
Q = 350. #gpm
x = 225. #ft
t = 1. #min
p = 1.6 #ft
t2 = 10. #min
p2 = 4.5 #ft
p3 = 700. #gpm
T = 3.2*10**4 #gpd/ft
t0 = 0.3 #min
u = 1.15*10**-5
#CALCULATIONS
S = t0*(T)*t0/((x)**2*1440) #ft
P = ((114.6*p3)/(T))*(-0.5772*2.3*math.log(u)) #ft
#RESULTS
print 'A straight line being drawn through the ppints for the higher = %.0f ft'%(P)
# note : book answer is wrong. please check.
#initialisation of variables
h = 4.8 #ft
m = 13.4 #ft
k = 10.**-1 #cm/sec
k1 = 3.28*10**-3 #fps
n = 7. #ft
n1 = 11. #ft
q = 1.0*10**-2
#CALCULATIONS
Q = k1*h*n/n1 #cfs/ft
Q1 = 2*q*10**2 #cfs
#RESULTS
print 'A satisfactory orthogonal system the flow of into the collector = %.0f cfs'%(Q1)