import math
#Variable declaration
P=10000; #Mobile density(mobiles/km**2)
R=500*10**-3; #km
V=10; #Average moving velocity of a mobile in Kmph
Nc=10.; #No of cells per LA
N_LA=5; #Number of LAs per MSC/VLR
#Calculations&Results
#Number of transactions and duration of each transaction to MSC/VLR per LU for different LU types are given in Table 12.1.(page no.374)
# L=length (km) of the cell exposed perimeter in an LA
L=6*R*(1./3+1./(2*math.sqrt(Nc)-3)); #Km
# lamdaLU=number of transactions processed by MSC/VLR in an LA perimeter of the jth cell per hour
LamdaLu=V*P*L/math.pi; #Lus per hour
# case(1)
print "Case-1"
R1_LU=LamdaLu/3600*(1*600./1000); #resource occupancy from Table 12.1
print 'The resource occupancy in the jth cell due to MS LUs is %.1f Erlangs'%R1_LU;
#case(2)
print "\nCase-2"
R2_LU=LamdaLu/3600*(0.8*3500/1000+0.2*4000/1000); #from Table 12.1
print 'The resource occupancy in the jth cell due to MS LUs is %.2f Erlangs'%R2_LU;
Np=6*math.sqrt(Nc/3)-3;#Number of cells located on perimeter of an LA
print 'Number of cells where inter-VLR LUs occur will be: %d'%(round(0.5*Np*4));
print 'Number of cells where intra-VLR LUs occur will be: %d'%(4*Nc-16);
TNLU=LamdaLu*(2*24+16*(0.8*14+0.2*16)); #from table 12.1
print 'The MSC/VLR transaction load using the fluid flow model is %.2e transactions at peak hour'%TNLU;