## Ex1-pg557¶

In [1]:
import math
#calculate Time for which flow into the tank continues after the power failure
import scipy
from scipy import integrate
Q=0.05; ## m^3/s
d=0.15; ## m^2
h=8.; ## m
g=9.81; ## m/s^2
l=90.; ## m
f=0.007;

u1=Q/(math.pi/4.*d**2.);

def function(u):
fun=(1./((h*g/l)+(2.*f/d)*u**2))
return fun

print("Time for which flow into the tank continues after the power failure is" )
print'%s %.1f %s'%(" ",-t[0],"s")

Time for which flow into the tank continues after the power failure is
2.6 s


## Ex4-pg588¶

In [2]:
import math
#calculate Estimate the height of tank required

print("Estimate the height of tank required")

f=0.006;
l=1400.; ## m
g=9.81; ## m/s^2
d1=0.75; ## m
d2=3.; ## m
Q=1.2; ## m^3/s
a=20.; ## m

K=4*f*l/(2*g*d1);

## 2*K*Y = l*a/(g*A) = 8.919 s^2

## Y=2*K*Y/2*K

Y=8.919/(2*K);
## When t=0

u0=Q/(math.pi/4*d1**2);

y0=K*u0**2;

C=-Y/K/math.exp(y0/Y);

## To determine the height of the surge tank, we consider the condition y = y_max when u = 0.

## 0 = 1/K*(y_max+Y) + C*exp(y_max/Y)

## From the above eqn we get

y_max=-Y;

H=a-y_max;
print'%s %.1f %s'%("The minimum height of the surge tank =",H,"m")

print("The actual design height should exceed the minimum required, say 23 m")

Estimate the height of tank required
The minimum height of the surge tank = 22.0 m
The actual design height should exceed the minimum required, say 23 m