In [6]:

```
#Given
R=5.0 #ohm
t=2
a=15
b=8
#Calculation
e=-a*t**2-(b*t)-t
I=-e/R
#Result
print"Induced current is", I,"A"
```

In [9]:

```
#Given
S1=75*10**-4 #m**2
B1=0.8 #wb/m**2
S2=100*10**-4
B2=1.4
t=0.05
#Calculation
a1=B1*S1
a2=B2*S2
a=a2-a1
e=-a/t
#Result
print"Induced e.m.f is", e,"Volt"
```

In [27]:

```
#Given
a1=5.5*10**-4 #Wb
a2=0.5*10**-4
N=1000
t=0.1
R=10 #ohm
#Calculation
a=a2-a1
a11=N*a
e=-(a11/t)
I1=e/R
I2=I1*t
#Result
print" Induced e.m.f produced is",e,"V"
print" Charge flowing through the coil in 0.1 is",I2,"C"
```

In [31]:

```
#Given
B=2.5*10**-3 #Wb**-2
L=1 #m
v=30 #r.p.s
#Calculation
import math
e=-B*math.pi*L**2*v
#Result
print"The produced e.m.f. between its ends is",round(e,3),"V"
```

In [37]:

```
#Given
L=1.2 #m
e=10**-2 #v
B=5*10**-5 #tesla
#Calculation
import math
V=e/(B*math.pi*L**2)
#Result
print"The rate of rotation of the wheel is",round(V,1),"Rotation a**-1"
```

In [45]:

```
#Given
D=10
L=0.50 #m
B=0.40*10**-4 #T
V=2 #r.p.s.
#Calculation
import math
E=-B*math.pi*L**2*V
#Result
print"The induced e.m.f. between the axle and the rim of the wheel is",round(E*10**5,3),"10**-5","V"
```

In [56]:

```
#Given
B=0.2 #T
r=0.1 #m
R=2 #ohm
D=20*math.pi #rad s**-1
#Calculation
import math
V=D/(2*math.pi)
E=-B*math.pi*r**2*V
I=E/R
#Result
print"(i) The potential difference is",round(E,4),"V"
print"(ii) The induced current is",round(I,4),"A"
```

In [61]:

```
#Given
B=8.0*10**-5 #Wb m**-2
L=2 #m
v=30 #m s**-1
#Calculation
e=B*L*v
#Result
print"The vertical component of earth's field is",e*10**3,"10**-3"
```

In [64]:

```
#Givem
l=10 #m
v=5 #m/s
Bh=0.30*10**-4 #Wb/m**2
#Calculation
e=Bh*l*v
#Result
print "Instantaneous value of e.m.f. induced is",e*10**3,"*10**-3 V"
```

In [72]:

```
#Given
B=0.3 #T
v=10**-2 #m/s
l=8*10**-2
L=1
v1=1.0
l2=2*10**-2
L1=8
#Calculation
e=B*l*v
l=L/v1
e1=B*l2*v
t1=L1/v1
#Result
print"(i) Voltage developed in the direction of motion normal to the longer side is", e*10**3,"mv"
print"(ii) Voltage developed in the direction of motion normal to the shorter side is",e1*10**3,"mV"
```

In [75]:

```
#Given
B=0.4 #T
v=5 #m/s
l=0.25 #m
e=0.5
R=5.0
#Calculation
e=B*l*v
I=e/R
#Result
print"New current is",I,"A"
print"Direction is from the end S to R"
```

In [80]:

```
#Given
v=500 #m/s
B=5*10**-4 #t
a=30 #degree
l=25 #m
#Calculation
import math
Bv=B*math.sin(a*3.14/180.0)
e=Bv*l*v
#Result
print"Voltage difference is", round(e,3),"V"
```

In [85]:

```
#Given
L=10*10**-3 #H
I=4*10**-3 #A
N=200.0
#Calculation
a=L*I
A=a/N
#Result
print"Total magnetic flux is",a,"Weber"
print"Magnetic flux through the cross section is",A,"Weber"
```

In [89]:

```
#Given
L=10**-2 #H
I1=0
I2=1 #A
l=1
t=0.01
#Calculation
e=-L*(l/t)
#Result
print"Self induced e.m.f is", e,"V"
print"The self-induced e.m.f. will act so as to oppose the growth of current."
```

In [97]:

```
#Given
n=1500 #turns/m
A=2*10**-4 #m**2
l=20 #A/s
#Calculation
import math
e=-4*math.pi*n*A*l*10**-7
#Result
print"Induced e.m.f. is",round(e*10**6,2)*10**-6,"V"
```

In [101]:

```
#Given
e=50*10**-3 #V
a=8
b=4
t=0.5
#Calculation
l=a-b
M=e*t/l
#Result
print"Mutual inductance is",M*10**3,"*10**-3 H"
```

In [109]:

```
#Given
n1=5000 #turns/m
A=4*10**-4 #m**2
n2l=200
u=10**-7
#Calculation
import math
M=4*math.pi*u*n1*n2l*A
#Result
print"Mutual inductance is", round(M*10**4,3),"*10**-4 H"
```

In [124]:

```
#Given
N=1200
A=12*10**-4
r=15*10**-2 #m
u=10**-7
I=1.0
N2=300
I1=0
I2=2
t=0.05
#Calculation
import math
n=N/(2*math.pi*r)
B=4*math.pi*u*n
a=B*A*N
L=a/I
a1=B*A*N2
a11=a1*I1
a12=a1*I2
a13=a12-a11
e=-a13/t
#Result
print"(a) Self inductance is", L*10**3,"*10**-3 H"
print"(b) Induced e.m.f is", round(e,3),"V"
```

In [130]:

```
#Given
A=25*10**-4
N=500
l=30.0*10**-2 #m
I=2.5
u=10**-7
t=10.0**-3
#Calculation
import math
n=N/l
B=4*math.pi*u*n*I
a=B*A*N
a1=0-a
e=-a1/t
#Result
print"Average induced e.m.f. produced is", round(e,3),"V"
```

In [136]:

```
#Given
N=25.0
A=2*10**-4 #m**2
q=7.5*10**-3
R=0.50
#Calculation
B=R*q/(N*A)
#Result
print"Field strength of the magnet is" ,B,"T"
```

In [156]:

```
#Given
B=0.50 #T
l=15*10**-2 #m
R=9.0*10**-3 #ohm
v=12*10**-2 #m/s
#Calculation
e=B*v*l
F=B*l*(e/R)
P=F*v
P1=e**2/R
#Result
print"(a) Induced e.m.f is", e*10**3,"*10**3 V"
print"The end P of the rod will become positive and the end Q will become negative"
print"(b) on closing the switch, electrons collects at the end Q. Therefore , excess charge is built up i.e it doesn't open when switch is open"
print"(c) The magnetic lorentz force on electron is cancelled due to the electric field set up across the two end"
print"(d) Retarding force is",F*10**2,"*10**-2 N"
print"(e) Power is",P*10**3,"*10*-3 W"
print"(f) Dissipated power is",P*10**3,"*10**-3 W"
print"(g) The motion of the rod does not cut field lines,hence no induced e.m.f. is produced"
```

In [168]:

```
#Given
a1=20*10**-2
a2=0.3*10**-2 #m
x=15*10**-2
I=2.0 #A
u=10**-7
#Calculation
import math
B1=u*2*math.pi*I*a1**2/((a1**2+x**2)**1.5)
a=B1*math.pi*a2**2
M=a/I
#Result
print"(a) Flux is", round(B1*10**6,3)*10**-6 ,"T"
print"(b) Mutual inductance is",round(M*10**11,3)*10**-11,"H"
```

In [181]:

```
#Given
N1=1500
l1=80.0*10**-2
l2=4*10**-2
r2=2*10**-2
I=3.0 #A
#Calculation
import math
A2=math.pi*r**2
n1=N1/l1
a=4*math.pi*10**-7*n1*I*4*math.pi*10**-4*100
M=a/I
#Result
print"Flux is",round( a*10**4,3),"*10**-4 Wb"
print"Mutual inductance is",round(M*10**4,2),"*10**-4 H"
```