#Given
U=1.5
c=3.0*10**8 #m s**-1
#Calculation
v=c/U
#Result
print" Speed of light in glass is",v*10**-8,"10**8","m s**-1"
#Given
u=1.33
Lu=589*10**-9 #m
c=3*10**8
#Calculation
v=c/Lu
v1=c/u
Lw=v1/v
#Result
print"(a) Wavelenght of light after reflection is",Lu*10**9,"10**-9"
print" Velocity of light after reflection is",c*10**-8,"10**8","m s**-1"
print" Frqequency of light after reflection is",round(v*10**-14,4),"10**14","Hz"
print"(b) Frequency of light after refraction is",round(v*10**-14,4),"10**14","Hz"
print" Velocity of light after refraction is",round(v1*10**-8,3),"10**8","m s**-1"
print" Wavelength of light after refraction is",round(Lw*10**9,2),"nm"
#Given
i=60
u=1.5
t=0.1 #m
#Calculation
import math
r=(math.sin(60*3.14/180.0))/u
a=math.asin(r)*180/3.14
d=t/math.cos(r*3.14/180.0)*(math.sin(24*3.14/180.0))
#Result
print"The lateral shift produced is",round(d,4),"m"
#Given
A=4/3.0
A1=3/2.0
I=30
#Calculation
import math
S=A1/A
R=math.sin(30*3.16/180.0)/S
A=math.asin(R)*180/3.14
#Result
print"The angle of refraction is",round(A,0)
#Given
t=15
u=1.5
#Calculation
d=t*(1-(1/u))
#Result
print" Real thickness of glass slab is",d,"cm"
print" The answer does not depend upon the location of the slab"
#Given
c=3*10**8 #m s**-1
v=2.0*10**8 #m s**-1
t=6.0 #cm
#Calculation
u=c/v
d=t*(1-(1/u))
#Result
print"An ink dot appear to be rasied",d,"cm"
#Given
d=12.5 #cm
a=9.4 #cm
u=1.63
#Calculation
S=d/a
S1=d/u
S3=a-S1
#Result
print"The refractive index of water is",round(S,2)
print"The refractive index of liquid is",round(S1,2),"cm"
print"Distance is",round(S3,2),"cm"
#Given
A=4/3.0
d=0.015 #m
#Calculatiom
t=d/(1-(1/A))
#Result
print"The height upto which water must be poured into the beaker is",t,"m"
#Given
A=3/2.0
A1=4/3.0
t1=6
t2=4
#Calculation
d1=t1*(1-(1/A))
d2=t2*(1-(1/A1))
d3=d1+d2
#Result
print"The apparent position of an object is",d3,"cm"
#Given
S=1.5
W=1.33
#Calculation
import math
A=S/W
C=1/A
Q=math.asin(C)*180/3.14
#Result
print"The critical angle for a glass water interface is",round(Q,0),"degree"
#Given
I=40 #degree
A=15 #degree
#Calculation
import math
r=I-A
u=(math.sin(40*3.14/180.0))/(math.sin(25*3.14/180.0))
c=1/u
A=math.asin(c)*180/3.14
#Result
print"The critical angle is",round(A,1),"degree"
#Given
u=1.5
h=20
#Calculation
import math
C=1/u
A=math.asin(C)*180/3.14
r=h*math.tan(A*3.14/180.0)
D=math.pi*r**2
#Result
print"The required surface area is",round(D,1),"cm**2"
#Given
A=60 #degree
B=1.45
#Calculation
import math
I=1/(math.sin(A*3.14/180.0))
Z=B/I
#Result
print"The refractive index of the liquid is",round(Z,3)
#Given
A=1.68
A1=1.44
A2=90 #degree
#Calculation
import math
K=A/A1
C=1/K
Q=math.asin(C)*180/3.14
r=A2-Q
I=A*math.sin(r*3.14/180.0)
Q1=math.asin(I)*180/3.14
#Result
print"Refraction index of glass fibre is",round(Q1,0),"degree"
print"All rays having angle of incidence between 0 degree to 60 degree will suffer total internal reflection"
#Given
u1=1
u2=1.5
u=-10.0 #cm
v=-40.0 #cm
#Calculation
R=(u2-u1)/((-u1/u)+(u2/v))
#Result
print"Radius of curvature is", R,"cm"
#Given
u=-60.0 #cm
R=25.0 #cm
u1=1
u2=1.5
R1=0.25
#Calculation
v=u2/(((u2-u1)/R)+(u1/u))
P=(u2-u1)/R1
#Result
print"Position of the image is", v,"cm"
print"Power of refracting surface is",P,"dioptre"
#Given
U1=1.5
U2=1
#Calculation
x=(U1+U2)/(U1-U2)
#Result
print"Distance of the object is",x,"R"
#Given
u1=1
u2=1.5
u=-10.0 #cm
R=-5.0
#Calculation
v=u1/((u1-u2)/R+(u2/u))
#Result
print"Position of the image is",v,"cm"
#Given
u=1.5
R=-5.0 #cm
OC=2
#Calculation
u1=R+OC
v=1/((1-u)/R+(u/u1))
#Result
print"Apparent position of the bubble is", v,"cm"
#Given
R=-0.02 #m
u=1.54
v=-0.01 #m
#calculation
u1=-u/((1-u)/R-(1/v))
#Result
print"Real depth of bubble is", round(u1,4),"m"
#Given
R=7.5 #cm
u=4/3.0
#Calculation
v=1/((1-u)/R)
#Result
print"It get focussed at",v,"cm"
#given
u=1.55
f=20 #cm
#Calculation
R=(u-1)*2*f
#Result
print"Radius of curvature is,",R,"cm"
#Given
u=1.5
f=0.3
#Calculation
R=(u-1)*f
#Result
print"Radius of curvature is", R,"m"
#Given
a=2.0
#Calculation
u=(a+1)/a
#Result
print"Refractive index is",u
#Given
ug=1.5
uc=1.63
R1=20.0 #cm
R2=-20.0
#Calculation
fair=1/((ug-1)*(1/R1-1/R2))
ug1=ug/uc
fc=1/((ug1-1)*(1/R1-1/R2))
#Result
print"Focal length of the lens is",round(fc,1),"cm"
#Given
fair=0.2 #m
ug=1.50
uw=1.33
#Calculation
R=1/(fair*(ug-1))
ug1=ug/uw
fw=1/((ug1-1)*R)
f=fw-fair
#Result
print"Change in focal length is", round(f,2),"m"
#Given
u1=1.2
u2=1.3
a=13.0
#Calculation
u=u1/u2
f=1/((-1/a)*(1/(u1-1)))
#Result
print"Focal length is", f,"f"
#Given
f=20.0 #cm\
u=12.0
f1=-20.0
#Calculation
v=1/(1/f+1/u)
v1=1/(1/f1+1/u)
#Result
print"(a) Beam will converge at a point of distant",v,"cm"
print"(b) Beam will converge at a point of distant",v1,"cm"
#Given
f=-0.2 #m
v=0.3 #m
#Calculation
u=1/(1/v-1/f)
#Result
print"The position of the point is",u,"m"
#Given
f=10.0 #cm
c=20 #cm
o=5.0
#Calculation
u=-(c-o)
u1=-(c+o)
v1=1/((1/f)+(1/u))
v2=1/((1/f)+(1/u1))
v=v1-v2
#Result
print"Length of image of needle is", round(v,2),"cm"
#Given
u=-30.0
v=20.0
R1=10.0
R2=-15.0
ug1=1.33
#Calculation
f=1/(-1/u+1/v)
ug=(1/f+1/6.0)*6.0
fw=1/(((ug/ug1)-1)*(1/R1-1/R2))
#Result
print"Focal length of the lens is", f,"cm"
print"Focal length of the lens is",round(fw,2),"cm"
#Given
f=0.12
m=-3.0
#Calculation
u=(f/m)-f
#Result
print"Distance between object and lens is", u,"m"
#Given
m=-19.0
v=10
#Calculation
f=v/(-m+1)
#Result
print"Focal length of the lens is",f,"m"
#Given
m=4
f=20
#Calculation
u=m+1-f
v=f-(m*f)
#Result
print"Object is at", u,"cm"
print"Image is at",v,"cm"
#Given
O=5 #cm
u=-45.0 #cm
v=90.0
#Calculation
f=-1/(1/u-1/v)
I=v*O/u
#Result
print"Focal length is", f,"cm"
print"size of the image is",I,"cm"
#Given
O=3 #cm
u=-14.0
f=-21.0
#Calculation
v=1/(1/f+1/u)
I=O*v/u
#Result
print"Image produced by the lens is",I,"cm"
#Given
R1=0.20
R2=-0.2
u=1.5
u1=1.25
#Calculation
P1=(u-1)*(1/R1-1/R2)
u2=u/u1
P2=(u2-1)*(-1/R2-1/R2)
P=P1/P2
#Result
print"Ratio of power of lens is", P
#Given
f1=15.0 #cm
f2=30.0
#Calculation
f=1/(1/f1+1/f2)
P=1/f
#Result
print"Power is",f*10**-2,"m"
print"Focal length is",P*10**2,"D"
#Given
P1=-1.5 #D
P2=2.75
#Calculation
P=P1+P2
f=1/P
#Result
print"Focal length is",f,"m"
#Given
a=0.11
a1=0.07
#Calculation
x=a-a1
u=(a1-0.01)/x
#Result
print"Refractive index is",u
#Given
a=70 #Degree
#Calculation
import math
a=1/(math.sin(a*3.14/180.0))
a1=math.atan(a)*180/3.14
u=1/math.sin(a1*3.14/180.0)
#Result
print"Critical angle is", round(u,3)
#Given
a=180 #degree
b=90
c=45
#Calculation
import math
r=a-(b+c)
A=1.352*math.sin(r*3.14/180.0)
A1=math.asin(A)*180/3.14
#Result
print"(a) Angle of incidence is sin-1[(math.sqrt(u**2-u1**2)-u1)/math.sqrt(2)]"
print"(b) Angle of incidence at face AB is",round(A1,0),"Degree"
#Given
u=40.0 #cm
R=10.0
u1=1
u2=1.5
#Calculation
v=u2/(((u2-u1)/R)+(u1/u))
#Result
print"Position of the image is", v,"cm"
#Given
x=0.04
y=8/300.0
u=-0.04
v=-16/500.0
#Calculation
U=x/y
R=(1-U)/(-U/u+1/v)
f=1/((U-1)/R)
print"(i) Refractive index is",U
print"(ii) Radius of curvature is",R,"m"
print"(iii) Focal length is",f,"m"
#Given
OI=90.0 #cm
O1O2=20
x=35 #cm
#Calculation
f=(OI-x)*x/((OI-x)+x)
#Result
print"Focal length of the lens is", round(f,1),"cm"
#Given
m=-4
a=1.5
u=0.3
#Calculation
x=a/(-m+1)
v=a-u
f=1/(1/u+1/v)
#Result
print"Focal length of the lens is", f,"m"
#Given
P1=8.0 #dioptre
P2=2.0
#Calculation
f1=1/P1
f2=1/P2
#Result
print"Focal length of lens 1 is",f1,"m"
print"Focal length of lens 2 is",f2,"m"