{
"metadata": {
"name": "",
"signature": "sha256:8b757cfb7a3d46c26051163fc5ae963591320e2fd8a4c339acfb031be7305afd"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8 : Acceleration in Mechanisms"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.1 Page No : 177"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NBO = 300. \t\t\t#rpm\n",
"OB = 150./1000\n",
"BA = 600./1000 \t\t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.4\n",
"#Calculating the angular velocity of BO\n",
"omegaBO = 2*math.pi*NBO/60 \t\t\t#rad/s\n",
"#Calculating the linear velocity of B with respect to O\n",
"vBO = omegaBO*OB \t\t\t#m/s\n",
"vB = vBO\n",
"#By measurement from the velocity diagram Fig. 8.4(b)\n",
"vAB = 3.4\n",
"vD = 4.1 \t\t\t#m/s\n",
"#Calculating the radial component of the acceleration of B with respect of O\n",
"arBO = vBO**2/OB \t\t\t#m/s**2\n",
"aB = arBO\n",
"#Calculating the radisla component of the accaleration of A with respect to B\n",
"arAB = vAB**2/BA \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.4(c)\n",
"aD = 117.\n",
"adashAB = 103. \t\t\t#m/s**2\n",
"#Calculating the angular velocity of the connecting rod\n",
"omegaAB = vAB/BA \t\t\t#rad/s**2\n",
"#Calculating the angular acceleration of the connecting rod\n",
"alphaAB = adashAB/BA \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" The linear velocity of the midpoint of the connecting rod, vD = %.1f m/s.\"%(vD)\n",
"print \" The linear acceleration of the midpoint of the connecting rod, aD = %d m/s**2.\"%(aD)\n",
"print \" The angular velocity of the connecting rod, omegaAB = %.2f rad/s, anticlockwise about B.\"%(omegaAB)\n",
"print \" The angular acceleration of the connecting rod, alphaAB = %.2f rad/s**2, clockwise about B.\"%(alphaAB)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The linear velocity of the midpoint of the connecting rod, vD = 4.1 m/s.\n",
" The linear acceleration of the midpoint of the connecting rod, aD = 117 m/s**2.\n",
" The angular velocity of the connecting rod, omegaAB = 5.67 rad/s, anticlockwise about B.\n",
" The angular acceleration of the connecting rod, alphaAB = 171.67 rad/s**2, clockwise about B.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.2 Page No : 180"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"omegaBC = 75. \t \t\t#rad/s\n",
"alphaBC = 1200. \t\t\t#rad/s**2\n",
"CB = 100/1000. #m\n",
"BA = 300/1000. \t\t\t#m/\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.5\n",
"#Calculating the linear velocity of B with respect to C\n",
"vBC = omegaBC*CB \t\t\t#m/s\n",
"#Calculating the math.tangential component of the acceleration of B with respect to C\n",
"alphatBC = alphaBC*CB \t\t\t#m/s**2\n",
"#By measurement from the velocity diagram Fig. 8.6(b)\n",
"vG = 6.8\n",
"vAB = 4 \t\t\t#m/s\n",
"#Calculating the angular velocity of AB\n",
"omegaAB = vAB/BA \t\t\t#rad/s\n",
"#Calculating the radial component of the acceleration of B with respect to C\n",
"arBC = vBC**2/CB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of A with respect to B\n",
"arAB = vAB**2/BA \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.6(c)\n",
"arBC = 120.\n",
"arAB = 53.3\n",
"aG = 414.\n",
"atAB = 546. \t\t\t#m/s**2\n",
"#Calculating the angular acceleration of AB\n",
"alphaAB = atAB/BA \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" The velocity of G, vG = %.1f m/s.\"%(vG)\n",
"print \" The angular velocity of AB, omegaAB = %.1f rad/s, clockwise.\"%(omegaAB)\n",
"print \" The acceleration of G, aG = %d m/s**2.\"%(aG)\n",
"print \" The angular accaleration of AB, alphaAB = %d rad/s**2.\"%(alphaAB)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The velocity of G, vG = 6.8 m/s.\n",
" The angular velocity of AB, omegaAB = 13.3 rad/s, clockwise.\n",
" The acceleration of G, aG = 414 m/s**2.\n",
" The angular accaleration of AB, alphaAB = 1820 rad/s**2.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.3 Page No : 182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"vC = 1.\n",
"vCD = vC \t\t\t#m/s\n",
"aC = 2.5 \t\t\t#m/s**2\n",
"AB = 3. #m\n",
"BC = 1.5 \t\t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.8\n",
"#By measurement from the velocity diagram Fig. 8.8(b)\n",
"vBA = 0.72\n",
"vBC = 0.72 \t\t\t#m/s\n",
"#Calculating the radial component of acceleration of B with respect to C\n",
"arBC = vBC**2/BC \t\t\t#m/s**2\n",
"#Calculating the radial component of acceleration of B with respect to A\n",
"arBA = vBA**2/AB \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.8(c)\n",
"aCD = 2.5\n",
"aC = aCD\n",
"arBC = 0.346\n",
"arBA = 0.173\n",
"atBA = 1.41\n",
"atBC = 1.94\n",
"vectorbb = 1.13\n",
"vectorab = 0.9 \t\t\t#m/s**2\n",
"#Calculating the angular accaleration of AB\n",
"alphaAB = atBA/AB \t\t\t#rad/s**2\n",
"#Calculating the angular acceleration of BC\n",
"alphaBC = atBC/BC \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" The magnitude of vertical component of the acceleration of the point B is %.2f m/s**2.\"%(vectorbb)\n",
"print \" The magnitude of horizontal component of the acceleration of the point B is %.1f m/s**2.\"%(vectorab)\n",
"print \" The angular acceleration of the link AB, alphaAB = %.2f rad/s**2.\"%(alphaAB)\n",
"print \" The angular acceleration of the link BC, alphaBC = %.1f rad/s**2.\"%(alphaBC)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The magnitude of vertical component of the acceleration of the point B is 1.13 m/s**2.\n",
" The magnitude of horizontal component of the acceleration of the point B is 0.9 m/s**2.\n",
" The angular acceleration of the link AB, alphaAB = 0.47 rad/s**2.\n",
" The angular acceleration of the link BC, alphaBC = 1.3 rad/s**2.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.4 Page No : 184"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"omegaQP = 10. \t\t\t#rad/s\n",
"PQ = 62.5/1000 #m\n",
"QR = 175./1000 #m\n",
"RS = 112.5/1000 #m\n",
"PS = 200./1000 \t\t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.9\n",
"#Calculating the velocity of Q with respect to P\n",
"vQP = omegaQP*PQ \t\t\t#m/s\n",
"vQ = vQP\n",
"#By measurement from the velocity diagram Fig. 8.9(b)\n",
"vRQ = 0.333\n",
"vRS = 0.426\n",
"vR = vRS \t\t\t#m/s\n",
"#Calculating the angular velocity of link QR\n",
"omegaQR = vRQ/QR \t\t\t#rad/s\n",
"#Calculating the angular velocity of link RS\n",
"omegaRS = vRS/RS \t\t\t#rad/s\n",
"#Calculating the radial component of the acceleration of Q with respect to P\n",
"arQP = vQP**2/PQ \t\t\t#m/s**2\n",
"aQP = arQP\n",
"aQ = aQP\n",
"#Calculating the radial component of the acceleration of R with respect to Q\n",
"arRQ = vRQ**2/QR \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of R with respect to S\n",
"arRS = vRS**2/RS \t\t\t#m/s**2\n",
"aRS = arRS\n",
"aR = aRS\n",
"#By measurement from the acceleration diagram Fig. 8.9(c)\n",
"atRQ = 4.1\n",
"atRS = 5.3 \t\t\t#m/s**2\n",
"#Calculating the angular acceleration of link QR\n",
"alphaQR = atRQ/QR \t\t\t#rad/s**2\n",
"#Calculating the angular acceleration of link RS\n",
"alphaRS = atRS/RS \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" The angular velocity of link QR, omegaQR = %.1f rad/s anticlockwise.\"%(omegaQR)\n",
"print \" The angular velocity of link RS, omegaRS = %.2f rad/s clockwise.\"%(omegaRS)\n",
"print \" The angular acceleration of link QR, alphaQR = %.2f rad/s**2 anticlockwise.\"%(alphaQR)\n",
"print \" The angular acceleration of link RS, alphaRS = %.1f rad/s**2 anticlockwise.\"%(alphaRS)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The angular velocity of link QR, omegaQR = 1.9 rad/s anticlockwise.\n",
" The angular velocity of link RS, omegaRS = 3.79 rad/s clockwise.\n",
" The angular acceleration of link QR, alphaQR = 23.43 rad/s**2 anticlockwise.\n",
" The angular acceleration of link RS, alphaRS = 47.1 rad/s**2 anticlockwise.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.5 Page No : 186"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"omegaAP1 = 10. \t\t\t#rad/s\n",
"alphaAP1 = 30. \t\t\t#rad/s**2\n",
"P1A = 300./1000 #m\n",
"P2B = 360./1000 #m\n",
"AB = P2B \t\t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.10\n",
"#Calculating the velocity of A with respect to P1\n",
"vAP1 = omegaAP1/P1A \t\t\t#m/s\n",
"vA = vAP1\n",
"#By measurement from the velocity diagram Fig. 8.11(b)\n",
"vBP2 = 2.2\n",
"vBA = 2.05 \t\t\t#m/s\n",
"#Calculating the angular velocity of P2B\n",
"omegaP2B = vBP2/P2B \t\t\t#rad/s\n",
"#Calculating the angular velocity of AB\n",
"omegaAB = vBA/AB \t\t\t#rad/s\n",
"#Calculating the math.tangential component of the acceleration of A with respect to P1\n",
"atAP1 = alphaAP1*P1A \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of A with respect to P1\n",
"arAP1 = vAP1**2/P1A \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arBA = vBA**2/AB \t\t\t#m/s**2\n",
"#Calculating the radial component of B with respect to P2\n",
"arBP2 = vBP2**2/P2B \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.11(c)\n",
"aBP2 = 29.6\n",
"aB = aBP2\n",
"atBA = 13.6\n",
"atBP2 = 26.6 \t\t\t#m/s**2\n",
"#Calculating the angular acceleration of P2B\n",
"alphaP2B = atBP2/P2B \t\t\t#rad/s**2\n",
"#Calculating the angular acceleration of AB\n",
"alphaAB = atBA/AB \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" The velocity of P2B, vBP2 = %.1f m/s.\"%(vBP2)\n",
"print \" The angular velocity of P2B, omegaP2B = %.1f rad/s, clockwise.\"%(omegaP2B)\n",
"print \" The angular velocity of AB, omegaAB = %.1f rad/s, anticlockwise.\"%(omegaAB)\n",
"print \" The acceleration of the joint B, aB = %.1f m/s**2.\"%(aB)\n",
"print \" The angular acceleration of P2B, alphaP2B = %.1f rad/s**2, anticlockwise.\"%(alphaP2B)\n",
"print \" The angular acceleration of AB, alphaAB = %.1f rad/s**2, anticlockwise.\"%(alphaAB)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The velocity of P2B, vBP2 = 2.2 m/s.\n",
" The angular velocity of P2B, omegaP2B = 6.1 rad/s, clockwise.\n",
" The angular velocity of AB, omegaAB = 5.7 rad/s, anticlockwise.\n",
" The acceleration of the joint B, aB = 29.6 m/s**2.\n",
" The angular acceleration of P2B, alphaP2B = 73.9 rad/s**2, anticlockwise.\n",
" The angular acceleration of AB, alphaAB = 37.8 rad/s**2, anticlockwise.\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.6 Page No : 188"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NAO = 20. \t\t\t#rpm\n",
"OA = 300./1000 #m\n",
"AB = 1200./1000 #m\n",
"BC = 450./1000 #m\n",
"CD = BC \t\t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.13\n",
"#Calculating the angular velocity of crank AO\n",
"omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
"#Calculating the linear velocity of A with respect to O\n",
"vAO = omegaAO*OA \t\t\t#m/s\n",
"vA = vAO\n",
"#By measurement from the velocity diagram Fig. 8.13(b)\n",
"vB = 0.4\n",
"vD = 0.24\n",
"vDC = 0.37\n",
"vBA = 0.54 \t\t\t#m/s\n",
"#Calculating the angular velocity of CD\n",
"omegaCD = vDC/CD \t\t\t#rad/s\n",
"#Calculating the radial component of the acceleration of A with respect to O\n",
"arAO = vAO**2/OA \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arBA = vBA**2/AB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of D with respect to C\n",
"arDC = vDC**2/CD \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.13(c)\n",
"aD = 0.16\n",
"atDC = 1.28 \t\t\t#m/s**2\n",
"#Calculating the angular acceleration of CD\n",
"alphaCD = atDC/CD \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" Velocity of sliding at B, vB = %.1f m/s.\"%(vB)\n",
"print \" Velocity of sliding at D, vD = %.2f m/s.\"%(vD)\n",
"print \" Angular velocity of CD, omegaCD = %.2f rad/s.\"%(omegaCD)\n",
"print \" Linear acceleration of D, aD = %.2f m/s**2.\"%(aD)\n",
"print \" Angular acceleration of CD, alphaCD = %.2f rad/s**2, clockwise.\"%(alphaCD)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Velocity of sliding at B, vB = 0.4 m/s.\n",
" Velocity of sliding at D, vD = 0.24 m/s.\n",
" Angular velocity of CD, omegaCD = 0.82 rad/s.\n",
" Linear acceleration of D, aD = 0.16 m/s**2.\n",
" Angular acceleration of CD, alphaCD = 2.84 rad/s**2, clockwise.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.7 Page No : 191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NAO = 180. \t\t\t#rpm\n",
"OA = 150./1000 #m\n",
"AB = 450./1000 #m\n",
"PB = 240./1000 #m\n",
"CD = 660./1000 \t\t#m\n",
"\n",
"#solution:\n",
"#Refer Fig. 8.15\n",
"#Calculating the angular speed of crank AO\n",
"omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
"#Calculating the velocity of A with respect to O\n",
"vAO = omegaAO*OA \t\t\t#m/s\n",
"vA = vAO\n",
"#By measurement from the velocity diagram Fig. 8.15(b)\n",
"vD = 2.36\n",
"vDC = 1.2\n",
"vBA = 1.8\n",
"vBP = 1.5 \t\t\t#m/s\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arAO = vBA**2/AB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arBA = vBA**2/AB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to P\n",
"arBP = vBP**2/PB \t\t\t#m/s**2\n",
"#Calculating the radial component of D with respect to C\n",
"arDC = vDC**2/CD \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.15(c)\n",
"aD = 69.6\n",
"atDC = 17.4 \t\t\t#m/s**2\n",
"#Calculating the angular acceleration of CD\n",
"alphaCD = atDC/CD \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" Acceleration of slider D, aD = %.1f m/s**2.\"%(aD)\n",
"print \" Angular acceleration of link CD, alphaCD = %.1f rad/s**2.\"%(alphaCD)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Acceleration of slider D, aD = 69.6 m/s**2.\n",
" Angular acceleration of link CD, alphaCD = 26.4 rad/s**2.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8 Page No : 193"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables:\n",
"NAO = 180. \t\t\t#rpm\n",
"OA = 180./1000\n",
"CB = 240./1000\n",
"AB = 360./1000\n",
"BD = 540./1000 \t\t\t#m\n",
"alphaAO = 50. \t\t\t#rad/s**2\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.17\n",
"#Calculating the angular speed of crank AO\n",
"omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
"#Calculating the velcoity of A with respect to O\n",
"vAO = omegaAO*OA \t\t\t#m/s\n",
"vA = vAO\n",
"#By measurement from the velocity diagram Fig. 8.17(b)\n",
"vBA = 0.9\n",
"vBC = 2.4\n",
"vDB = 2.4\n",
"vD = 2.05 \t\t\t#m/s\n",
"\n",
"#Calculating the angular velocity of BD\n",
"omegaBD = vDB/BD \t\t\t#rad/s\n",
"#Calculating the tangential component of the acceleration of A with respect to O\n",
"atAO = alphaAO*OA \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of A with respect to O\n",
"arAO = vAO**2/OA \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arBA = vBA**2/AB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to C\n",
"arBC = vBC**2/AB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of D with respect to B\n",
"arDB = vDB**2/BD \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.17(c)\n",
"aD = 13.3\n",
"atDB = 38.5 \t\t\t#m/s**2\n",
"\n",
"#Calculating the angular acceleration of BD\n",
"alphaBD = atDB/BD \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" Velocity of slider D, vD = %.2f m/s.\"%(vD)\n",
"print \" Angular velocity of BD, omegaBD = %.1f rad/s.\"%(omegaBD)\n",
"print \" Acceleration of slider D, aD = %.1f m/s**2.\"%(aD)\n",
"print \" Angular acceleration of BD, alphaBD = %.1f rad/s**2, clockwise.\"%(alphaBD)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Velocity of slider D, vD = 2.05 m/s.\n",
" Angular velocity of BD, omegaBD = 4.4 rad/s.\n",
" Acceleration of slider D, aD = 13.3 m/s**2.\n",
" Angular acceleration of BD, alphaBD = 71.3 rad/s**2, clockwise.\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.9 Page No : 196"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"omegaAO1 = 100. \t\t\t#rad/s\n",
"O1A = 100./1000 #m\n",
"AC = 700./1000 #m\n",
"BC = 200./1000 #m\n",
"BD = 150./1000 #m\n",
"O2D = 200./1000 #m\n",
"O2E = 400./1000 #m\n",
"O3C = 200./1000 \t\t\t#m\n",
"m=0.0;\n",
"#Solution:\n",
"#Refer Fig. 8.19\n",
"#Calculating the linear velocity of A with respect to O1\n",
"vAO1 = omegaAO1/O1A \t\t\t#m/s\n",
"vA = vAO1\n",
"#By measurement from the velocity diagram Fig. 8.19(b)\n",
"vCA = 7.\n",
"vCO3 = 10.\n",
"vC = vCO3\n",
"vDB = 10.2\n",
"vDO2 = 2.8\n",
"vD = vDO2\n",
"vE = 5.8\n",
"vEO2 = vE \t\t\t#m/s\n",
"#Calculating the radial component of the acceleration of A with respect to O1\n",
"arAO1 = vAO1**2/O1A \t\t\t#m/s**2\n",
"aAO1 = arAO1\n",
"aA = aAO1\n",
"#Calculating the radial component of the acceleration of C with respect to A\n",
"arCA = vCA**2/AC \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of C with respect to O3\n",
"arCO3 = vCO3**2/O3C \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of D with respect to B\n",
"arDB = vDB**2/BD \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of D with respect to O2\n",
"arDO2 = vDO2**2/O2D \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of E with respect to O2\n",
"arEO2 = vEO2**2/O2E \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.19(c)\n",
"aE = 1200.\n",
"atDO2 = 610. \t\t\t#m/s**2\n",
"aEO2 = aE\n",
"aB = 440. \t\t\t#Acceleration of point B\n",
"#m/s**2\n",
"#Calculating the angular acceleration of the bell crank lever\n",
"alpha = atDO2/O2D \t\t\t#The angular acceleration of the bell crank lever rad/s**2\n",
"\n",
"#Results:\n",
"print \" Velocity of the point E on the bell crank lever, vE = %.1f m/s.\"%(vE)\n",
"print \" Acceleration of point B = %d m/s**2.\"%(aB)\n",
"print \" Acceleration of point E, aE = %d m/s**2.\"%(aE)\n",
"print \" Angular acceleration of the bell crank lever = %d rad/s**2, anticlockwise.\"%(alpha)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Velocity of the point E on the bell crank lever, vE = 5.8 m/s.\n",
" Acceleration of point B = 440 m/s**2.\n",
" Acceleration of point E, aE = 1200 m/s**2.\n",
" Angular acceleration of the bell crank lever = 3050 rad/s**2, anticlockwise.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.10 Page No : 199"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NAO = 100. \t\t\t#rpm\n",
"OA = 150./1000 #m\n",
"AB = 600./1000 #m\n",
"BC = 350./1000 #m\n",
"CD = 150./1000 #m\n",
"DE = 500./1000 \t\t#m\n",
"dA = 50./1000\n",
"dB = dA\n",
"rA = dA/2\n",
"rB = dB/2 \t\t\t#m\n",
"pF = 0.35 \t\t\t#N/mm**2\n",
"DF = 250. \t\t\t#mm\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.21\n",
"#Calculating the angular speed of the crank AO\n",
"omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
"#Calculating the velocity of A with respect to O\n",
"vAO = omegaAO*OA \t\t\t#m/s\n",
"vA = vAO\n",
"#By measurement from the velocity diagram Fig. 8.21(b)\n",
"vBA = 1.65\n",
"vBC = 0.93\n",
"vB = vBC\n",
"vED = 0.18\n",
"vEO = 0.36\n",
"vE = vEO\n",
"vF = vE \t\t\t#m/s\n",
"\n",
"#Calculating the velocity of D with respect to C\n",
"vDC = vBC*CD/BC \t\t\t#m/s\n",
"#Calculating the angular velocity of B with respect to A\n",
"omegaBA = vBA/AB \t\t\t#rad/s\n",
"#Calculating the angular velocity of B with respect to C\n",
"omegaBC = vBC/BC \t\t\t#rad/s\n",
"#Calculating the rubbing velocity of pin at A\n",
"vrA = (omegaAO-omegaBA)*rA \t\t\t#The rubbing velocity of pin at A m/s\n",
"#Calculating the rubbing velocity of pin at B\n",
"vrB = (omegaBA+omegaBC)*rB \t\t\t#The rubbing velocity of pin at B m/s\n",
"#Calculating the force at the pump piston at F\n",
"FF = pF*math.pi/4*DF**2 \t\t\t#N\n",
"#Calculating the force required at the crankshaft A\n",
"FA = FF*vF/vA \t\t\t#N\n",
"#Calculating the torque required at the crankshaft\n",
"TA = FA*OA \t\t\t#N-m\n",
"#Calculating the radial component of the acceleration of A with respect to O\n",
"arAO = vAO**2/OA \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arBA = vBA**2/AB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to C\n",
"arBC = vBC**2/BC \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of E with respect to D\n",
"arED = vED**2/DE \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.21(c)\n",
"aBC = 9.2\n",
"aB = aBC\n",
"aBA = 9\n",
"aE = 3.8 \t\t\t#m/s**2\n",
"#Calculating the acceleration of D\n",
"aD = aBC*CD/BC \t\t\t#m/s**2\n",
"\n",
"#Results:\n",
"print \" The velocity of the cross-head E, vE = %.2f m/s.\"%(vE)\n",
"print \" The rubbing velocity of pin at A = %.3f m/s.\"%(vrA)\n",
"print \" The rubbing velocity of pin at B = %.3f m/s.\"%(vrB)\n",
"print \" The torque required at the crankshaft, TA = %d N-m.\"%(TA)\n",
"print \" The acceleration of the crosshead E, aE = %.1f m/s**2.\"%(aE)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The velocity of the cross-head E, vE = 0.36 m/s.\n",
" The rubbing velocity of pin at A = 0.193 m/s.\n",
" The rubbing velocity of pin at B = 0.135 m/s.\n",
" The torque required at the crankshaft, TA = 590 N-m.\n",
" The acceleration of the crosshead E, aE = 3.8 m/s**2.\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.11 Page No : 203"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NAO = 150. \t\t\t#rpm\n",
"OA = 150./1000 #m\n",
"AB = 550./1000 #m\n",
"AC = 450./1000 #m\n",
"DC = 500./1000 #m\n",
"BE = 350./1000 \t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.23\n",
"#Calculating the angular speed of the crank AO\n",
"omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
"#Calculating the linear velocity of A with respect to O\n",
"vAO = omegaAO*OA \t\t\t#m/s\n",
"vA = vAO\n",
"#By measurement from the velocity diagram Fig. 8.23(b)\n",
"vCA = 0.53\n",
"vCD = 1.7\n",
"vC = vCD\n",
"vEB = 1.93\n",
"vE = 1.05 \t\t\t#m/s\n",
"#Calculating the radial component of the acceleration of A with respect to O\n",
"arAO = vAO**2/OA \t\t\t#m/s**2\n",
"aA = arAO\n",
"#Calculating the radial component of the acceleration of C with respect to A\n",
"arCA = vCA**2/AC \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of C with respect to D\n",
"arCD = vCD**2/DC \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of E with respect to B\n",
"arEB = vEB**2/BE \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.23(c)\n",
"aE = 3.1 \t\t\t#m/s**2\n",
"\n",
"#Results:\n",
"print \" Velocity of the ram E, vE = %.2f m/s.\"%(vE)\n",
"print \" Acceleration of the ram E, aE = %.1f m/s**2.\"%(aE)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Velocity of the ram E, vE = 1.05 m/s.\n",
" Acceleration of the ram E, aE = 3.1 m/s**2.\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.12 Page No : 205"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NDC = 1140. \t\t\t#rpm\n",
"AB = 80./1000 #m\n",
"CD = 40./1000 #m\n",
"BE = 150./1000 #m\n",
"DE = BE #m\n",
"EP = 200./1000 \t\t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.25\n",
"#Calculating the angular speed of the link CD\n",
"omegaDC = 2*math.pi*NDC/60 \t\t\t#rad/s\n",
"#Calculating the velocity of D with respect to C\n",
"vDC = omegaDC*CD \t\t\t#m/s\n",
"vD = vDC\n",
"#Calculating the angular speed of the larger wheel\n",
"omegaBA = omegaDC*CD/AB \t\t\t#rad/s\n",
"#Calculating the velocity of B with respect to A\n",
"vBA = omegaBA*AB \t\t\t#m/s\n",
"vB = vBA\n",
"#By measurement from the velocity diagram Fig. 8.25(b)\n",
"vEB = 8.1\n",
"vED = 0.15\n",
"vPE = 4.7\n",
"vP = 0.35 \t\t\t#m/s\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arBA = vBA**2/AB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of D with respect to C\n",
"arDC = vDC**2/CD \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of E with respect to B\n",
"arEB = vEB**2/BE \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of E with respect to D\n",
"arED = vED**2/DE \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of P with respect to E\n",
"arPE = vPE**2/EP \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.25(c)\n",
"aP = 655. \t\t\t#m/s**2\n",
"\n",
"#Results:\n",
"print \" Velocity of P, vP = %.2f m/s.\"%(vP)\n",
"print \" Acceleration of the piston P, aP = %d m/s**2.\"%(aP)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Velocity of P, vP = 0.35 m/s.\n",
" Acceleration of the piston P, aP = 655 m/s**2.\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.13 Page No : 211"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NBA = 120. \t\t\t#rpm\n",
"AB = 150./1000 #m\n",
"OC = 700./1000 #m\n",
"CD = 200./1000 \t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.29\n",
"#Calculating the angular speed of the crank AB\n",
"omegaAB = 2*math.pi*NBA/AB \t\t\t#rad/s\n",
"#Calculating the velocity of B with respect to A\n",
"vBA = omegaBA*AB \t\t\t#m/s\n",
"#By measurement from the velocity diagram Fig. 8.29(b)\n",
"vD = 2.15\n",
"vBBdash = 1.05\n",
"vDC = 0.45\n",
"vBdashO = 1.55\n",
"vCO = 2.15 \t\t\t#m/s\n",
"BdashO = 0.52 \t\t\t#m\n",
"#Calculating the angular velocity of the link OC or OB'\n",
"omegaCO = vCO/OC \t\t\t#rad/s\n",
"omegaBdashO = omegaCO \t\t\t#rad/s\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arBA = omegaAB**2/AB \t\t\t#m/s**2\n",
"#Calculating the coriolis component of the acceleration of slider B with respect to the coincident point B'\n",
"acBBdash = 2*omegaCO*vBBdash \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of D with respect to C\n",
"arDC = vDC**2/CD \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B' with respect to O\n",
"arBdashO = vBdashO**2/BdashO \t\t\t#m/s**2\n",
"#By measurement fro the acceleration diagram Fig. 8.29(c)\n",
"aD = 8.4\n",
"atBdashO = 6.4 \t\t\t#m/s**2\n",
"#Calculating the angular acceleration of the slotted lever\n",
"alpha = atBdashO/BdashO \t\t\t#The angular acceleration of the slotted lever rad/s**2\n",
"\n",
"#Results:\n",
"print \" Velocity of the ram D, vD = %.2f m/s.\"%(vD)\n",
"print \" Acceleration of the ram D, aD = %.1f m/s**2.\"%(aD)\n",
"print \" Angular acceleration of the slotted lever = %.1f rad/s**2, anticlockwise.\"%(alpha)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Velocity of the ram D, vD = 2.15 m/s.\n",
" Acceleration of the ram D, aD = 8.4 m/s**2.\n",
" Angular acceleration of the slotted lever = 12.3 rad/s**2, anticlockwise.\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.14 Page No : 214"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NBA = 200. \t\t\t#rpm\n",
"AB = 75./1000 #m\n",
"PQ = 375./1000 #m\n",
"QR = 500./1000 \t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.31\n",
"#Calculating the angular velocity of the crank AB\n",
"omegaBA = 2*math.pi*NBA/60 \t\t\t#rad/s\n",
"#Calculating the velocity of B with respect to A\n",
"vBA = omegaBA*AB \t\t\t#m/s\n",
"#By measurement from the velocity diagram Fig. 8.31(b)\n",
"vR = 1.6\n",
"vBdashB = 1.06\n",
"vBdashP = 1.13\n",
"vRQ = 0.4\n",
"vQP = 1.7 \t\t\t#m/s\n",
"PBdash = 248./1000 \t\t\t#m\n",
"#Calculating the angular velocity of the link PQ\n",
"omegaPQ = vQP/PQ \t\t\t#rad/s\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arBA = omegaBA**2*AB \t\t\t#m/s**2\n",
"#Calculating the coriolis component of the acceleration of B with respect to coincident point B'\n",
"acBBdash = 2*omegaPQ*vBdashB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of R with respect to Q\n",
"arRQ = vRQ**2/QR \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B' with respect to P\n",
"arBdashP = vBdashP**2/PBdash \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.31(d)\n",
"aR = 22.\n",
"aBBdash = 18. \t\t\t#m/s**2\n",
"\n",
"#Results:\n",
"print \" Velocity of the tool-box R, vR = %.1f m/s.\"%(vR)\n",
"print \" Acceleration of the tool-box R, aR = %d m/s**2.\"%(aR)\n",
"print \" The acceleration of sliding of the block B along the slotted lever PQ, aBBdash = %d m/s**2.\"%(aBBdash)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Velocity of the tool-box R, vR = 1.6 m/s.\n",
" Acceleration of the tool-box R, aR = 22 m/s**2.\n",
" The acceleration of sliding of the block B along the slotted lever PQ, aBBdash = 18 m/s**2.\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.15 Page No : 218"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NAO = 30. \t\t\t#rpm\n",
"OA = 150./1000 #m\n",
"OC = 100./1000 #m\n",
"CD = 125./1000 #m\n",
"DR = 500./1000 \t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.33\n",
"#Calculating the angular speed of the crank OA\n",
"omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
"#Calculating the velocity of A with respect to O\n",
"vAO = omegaAO*OA \t\t\t#m/s\n",
"vA = vAO\n",
"#By measurement from the velocity diagram Fig. 8.33(b)\n",
"vBC = 0.46\n",
"vAB = 0.15\n",
"vRD = 0.12 \t\t\t#m/s\n",
"CB = 240./1000 \t\t\t#m\n",
"#Calculating the angular velocity of the link BC\n",
"omegaBC = vBC/CB \t\t\t#rad/s\n",
"#Calculating the radial component of the acceleration of A with respect to O\n",
"arAO = vAO**2/OA \t\t\t#m/s**2\n",
"#Calculating the coriolis component of the acceleration of A with respect to coincident point B\n",
"acAB = 2*omegaBC*vAB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to C\n",
"arBC = vBC**2/CB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of R with respect to D\n",
"arRD = vRD**2/DR \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.33(c)\n",
"aR = 0.18\n",
"atBC = 0.14 \t\t\t#m/s**2\n",
"#Calculating the angular acceleration of the slotted lever CA\n",
"alphaCA = atBC/CB \t\t\t#rad/s**2\n",
"alphaBC = alphaCA\n",
"\n",
"#Results:\n",
"print \" Acceleration of the sliding block R, aR = %.2f m/s**2.\"%(aR)\n",
"print \" Angular acceleration of the slotted lever CA, alphaCA = %.3f rad/s**2, anticlockwise.\"%(alphaCA)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Acceleration of the sliding block R, aR = 0.18 m/s**2.\n",
" Angular acceleration of the slotted lever CA, alphaCA = 0.583 rad/s**2, anticlockwise.\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.16 Page No : 221"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"AB = 125./1000 \t\t\t#m\n",
"NCO = 300. \t\t\t#rpm\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.35\n",
"#By measurement from the space diagram Fig. 8.35(a)\n",
"OC = 85./1000 \t\t\t#m\n",
"#Calculating the angular velocity of the link CO\n",
"omegaCO = 2*math.pi*NCO/60 \t\t\t#rad/s\n",
"#Calculating the velocity of C with respect to O\n",
"vCO = omegaCO*OC \t\t\t#m/s\n",
"vC = vCO\n",
"#By measurement from the velocity diagram Fig. 8.35(b)\n",
"vBC = 0.85\n",
"vBA = 2.85\n",
"vB = vBA \t\t\t#m/s\n",
"#Calculating the radial component of of the acceleration of C with respect to O\n",
"arCO = vCO**2/OC \t\t\t#m/s**2\n",
"#Calculating the coriolis component of of acceleration of the piston B with respect to the cylinder or the coincident point C\n",
"acBC = 2*omegaCO*vBC \t\t\t#m/s**2\n",
"#Calculating the radial component of of the acceleration of B with respect to A\n",
"arBA = vBA**2/AB \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.35(d)\n",
"aBC = 73.2\n",
"atBA = 37.6 \t\t\t#m/s**2\n",
"#Calculating the angular acceleration of the connecting rod AB\n",
"alphaAB = atBA/AB \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" Acceleration of the piston inside the cylinder, aBC = %.1f m/s**2.\"%(aBC)\n",
"print \" Angular acceleration of the connecting rod AB, alphaAB = %d rad/s**2, clockwise.\"%(alphaAB)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Acceleration of the piston inside the cylinder, aBC = 73.2 m/s**2.\n",
" Angular acceleration of the connecting rod AB, alphaAB = 300 rad/s**2, clockwise.\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.17 Page No : 223"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"NAO = 100. \t\t\t#rpm\n",
"OA = 50./1000 #m\n",
"AB = 350./1000 #m\n",
"DE = 250./1000 #m\n",
"EF = DE #m\n",
"CB = 125./1000 \t\t#m\n",
"\n",
"#Solution:\n",
"#Refer Fig. 8.37\n",
"#Calculating the angular velocity of the crank AO\n",
"omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
"#Calculating the velocity of A with respect to O\n",
"vAO = omegaAO*OA \t\t\t#m/s\n",
"vA = vAO\n",
"#By measurement from the velocity diagram Fig. 8.37(b)\n",
"vBA = 0.4\n",
"vBC = 0.485\n",
"vB = vBC\n",
"vSD = 0.265\n",
"vQS = 0.4\n",
"vED = 0.73\n",
"vFE = 0.6\n",
"vF = 0.27 \t\t\t#m/s\n",
"DS = 85./1000 \t\t\t#m\n",
"#Calculating the angular velocity of the link DE\n",
"omegaDE = vED/DE \t\t\t#rad/s\n",
"#Calculating the velocity of sliding of the link DE in the swivel block\n",
"vS = vQS \t\t\t#m/s\n",
"#Calculating the radial component of the acceleration of A with respect to O\n",
"arAO = vAO**2/OA \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to A\n",
"arBA = vBA**2/AB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of B with respect to C\n",
"arBC = vBC**2/CB \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of S with respect to D\n",
"arSD = vSD**2/DS \t\t\t#m/s**2\n",
"#Calculating the coriolis component of the acceleration of Q with respect to S\n",
"acQS = 2*omegaDE*vQS \t\t\t#m/s**2\n",
"#Calculating the radial component of the acceleration of F with respect to E\n",
"arFE = vFE**2/EF \t\t\t#m/s**2\n",
"#By measurement from the acceleration diagram Fig. 8.37(d)\n",
"arQS = 1.55 \t\t\t#m/s**2\n",
"\n",
"#Results:\n",
"print \" Velocity of the slider block F, vF = %.2f m/s.\"%(vF)\n",
"print \" Angular velocity of the link DE, omegaDE = %.2f rad/s, anticlockwise.\"%(omegaDE)\n",
"print \" Velocity of sliding of the link DE in the swivel block, vS = %.1f m/s.\"%(vS)\n",
"print \" Acceleration of sliding of the link DE in the trunnion, arQS = %.2f m/s**2.\"%(arQS)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Velocity of the slider block F, vF = 0.27 m/s.\n",
" Angular velocity of the link DE, omegaDE = 2.92 rad/s, anticlockwise.\n",
" Velocity of sliding of the link DE in the swivel block, vS = 0.4 m/s.\n",
" Acceleration of sliding of the link DE in the trunnion, arQS = 1.55 m/s**2.\n"
]
}
],
"prompt_number": 18
}
],
"metadata": {}
}
]
}